mirror of
https://github.com/Snailclimb/JavaGuide
synced 2025-06-16 18:10:13 +08:00
Update java线程池学习总结.md
This commit is contained in:
parent
c660f5a7c9
commit
ccb7ba9a50
@ -312,32 +312,32 @@ public class ThreadPoolExecutorDemo {
|
||||
**Output:**
|
||||
|
||||
```
|
||||
pool-1-thread-2 Start. Time = Tue Nov 12 20:59:44 CST 2019
|
||||
pool-1-thread-5 Start. Time = Tue Nov 12 20:59:44 CST 2019
|
||||
pool-1-thread-4 Start. Time = Tue Nov 12 20:59:44 CST 2019
|
||||
pool-1-thread-1 Start. Time = Tue Nov 12 20:59:44 CST 2019
|
||||
pool-1-thread-3 Start. Time = Tue Nov 12 20:59:44 CST 2019
|
||||
pool-1-thread-5 End. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-3 End. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-2 End. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-4 End. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-1 End. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-2 Start. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-1 Start. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-4 Start. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-3 Start. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-5 Start. Time = Tue Nov 12 20:59:49 CST 2019
|
||||
pool-1-thread-2 End. Time = Tue Nov 12 20:59:54 CST 2019
|
||||
pool-1-thread-3 End. Time = Tue Nov 12 20:59:54 CST 2019
|
||||
pool-1-thread-4 End. Time = Tue Nov 12 20:59:54 CST 2019
|
||||
pool-1-thread-5 End. Time = Tue Nov 12 20:59:54 CST 2019
|
||||
pool-1-thread-1 End. Time = Tue Nov 12 20:59:54 CST 2019
|
||||
pool-1-thread-3 Start. Time = Sun Apr 12 11:14:37 CST 2020
|
||||
pool-1-thread-5 Start. Time = Sun Apr 12 11:14:37 CST 2020
|
||||
pool-1-thread-2 Start. Time = Sun Apr 12 11:14:37 CST 2020
|
||||
pool-1-thread-1 Start. Time = Sun Apr 12 11:14:37 CST 2020
|
||||
pool-1-thread-4 Start. Time = Sun Apr 12 11:14:37 CST 2020
|
||||
pool-1-thread-3 End. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-4 End. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-1 End. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-5 End. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-1 Start. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-2 End. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-5 Start. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-4 Start. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-3 Start. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-2 Start. Time = Sun Apr 12 11:14:42 CST 2020
|
||||
pool-1-thread-1 End. Time = Sun Apr 12 11:14:47 CST 2020
|
||||
pool-1-thread-4 End. Time = Sun Apr 12 11:14:47 CST 2020
|
||||
pool-1-thread-5 End. Time = Sun Apr 12 11:14:47 CST 2020
|
||||
pool-1-thread-3 End. Time = Sun Apr 12 11:14:47 CST 2020
|
||||
pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020
|
||||
|
||||
```
|
||||
|
||||
### 4.2 线程池原理分析
|
||||
|
||||
承接 4.1 节,我们通过代码输出结果可以看出:**线程池每次会同时执行 5 个任务,这 5 个任务执行完之后,剩余的 5 个任务才会被执行。** 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会)
|
||||
承接 4.1 节,我们通过代码输出结果可以看出:**线程首先会先执行 5 个任务,然后这些任务有任务被执行完的话,就会去拿新的任务执行。** 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会)
|
||||
|
||||
现在,我们就分析上面的输出内容来简单分析一下线程池原理。
|
||||
|
||||
@ -346,11 +346,11 @@ pool-1-thread-1 End. Time = Tue Nov 12 20:59:54 CST 2019
|
||||
```java
|
||||
// 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)
|
||||
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
|
||||
|
||||
|
||||
private static int workerCountOf(int c) {
|
||||
return c & CAPACITY;
|
||||
}
|
||||
|
||||
//任务队列
|
||||
private final BlockingQueue<Runnable> workQueue;
|
||||
|
||||
public void execute(Runnable command) {
|
||||
@ -390,11 +390,120 @@ pool-1-thread-1 End. Time = Tue Nov 12 20:59:54 CST 2019
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
**`addWorker` 这个方法主要用来创建新的工作线程,如果返回true说明创建和启动工作线程成功,否则的话返回的就是false。**
|
||||
|
||||
```java
|
||||
// 全局锁,并发操作必备
|
||||
private final ReentrantLock mainLock = new ReentrantLock();
|
||||
// 跟踪线程池的最大大小,只有在持有全局锁mainLock的前提下才能访问此集合
|
||||
private int largestPoolSize;
|
||||
// 工作线程集合,存放线程池中所有的(活跃的)工作线程,只有在持有全局锁mainLock的前提下才能访问此集合
|
||||
private final HashSet<Worker> workers = new HashSet<>();
|
||||
//获取线程池状态
|
||||
private static int runStateOf(int c) { return c & ~CAPACITY; }
|
||||
//判断线程池的状态是否为 Running
|
||||
private static boolean isRunning(int c) {
|
||||
return c < SHUTDOWN;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* 添加新的工作线程到线程池
|
||||
* @param firstTask 要执行
|
||||
* @param core参数为true的话表示使用线程池的基本大小,为false使用线程池最大大小
|
||||
* @return 添加成功就返回true否则返回false
|
||||
*/
|
||||
private boolean addWorker(Runnable firstTask, boolean core) {
|
||||
retry:
|
||||
for (;;) {
|
||||
//这两句用来获取线程池的状态
|
||||
int c = ctl.get();
|
||||
int rs = runStateOf(c);
|
||||
|
||||
// Check if queue empty only if necessary.
|
||||
if (rs >= SHUTDOWN &&
|
||||
! (rs == SHUTDOWN &&
|
||||
firstTask == null &&
|
||||
! workQueue.isEmpty()))
|
||||
return false;
|
||||
|
||||
for (;;) {
|
||||
//获取线程池中线程的数量
|
||||
int wc = workerCountOf(c);
|
||||
// core参数为true的话表明队列也满了,线程池大小变为 maximumPoolSize
|
||||
if (wc >= CAPACITY ||
|
||||
wc >= (core ? corePoolSize : maximumPoolSize))
|
||||
return false;
|
||||
//原子操作将workcount的数量加1
|
||||
if (compareAndIncrementWorkerCount(c))
|
||||
break retry;
|
||||
// 如果线程的状态改变了就再次执行上述操作
|
||||
c = ctl.get();
|
||||
if (runStateOf(c) != rs)
|
||||
continue retry;
|
||||
// else CAS failed due to workerCount change; retry inner loop
|
||||
}
|
||||
}
|
||||
// 标记工作线程是否启动成功
|
||||
boolean workerStarted = false;
|
||||
// 标记工作线程是否创建成功
|
||||
boolean workerAdded = false;
|
||||
Worker w = null;
|
||||
try {
|
||||
|
||||
w = new Worker(firstTask);
|
||||
final Thread t = w.thread;
|
||||
if (t != null) {
|
||||
// 加锁
|
||||
final ReentrantLock mainLock = this.mainLock;
|
||||
mainLock.lock();
|
||||
try {
|
||||
//获取线程池状态
|
||||
int rs = runStateOf(ctl.get());
|
||||
//rs < SHUTDOWN 如果线程池状态依然为RUNNING,并且线程的状态是存活的话,就会将工作线程添加到工作线程集合中
|
||||
//(rs=SHUTDOWN && firstTask == null)如果线程池状态小于STOP,也就是RUNNING或者SHUTDOWN状态下,同时传入的任务实例firstTask为null,则需要添加到工作线程集合和启动新的Worker
|
||||
// firstTask == null证明只新建线程而不执行任务
|
||||
if (rs < SHUTDOWN ||
|
||||
(rs == SHUTDOWN && firstTask == null)) {
|
||||
if (t.isAlive()) // precheck that t is startable
|
||||
throw new IllegalThreadStateException();
|
||||
workers.add(w);
|
||||
//更新当前工作线程的最大容量
|
||||
int s = workers.size();
|
||||
if (s > largestPoolSize)
|
||||
largestPoolSize = s;
|
||||
// 工作线程是否启动成功
|
||||
workerAdded = true;
|
||||
}
|
||||
} finally {
|
||||
// 释放锁
|
||||
mainLock.unlock();
|
||||
}
|
||||
//// 如果成功添加工作线程,则调用Worker内部的线程实例t的Thread#start()方法启动真实的线程实例
|
||||
if (workerAdded) {
|
||||
t.start();
|
||||
/// 标记线程启动成功
|
||||
workerStarted = true;
|
||||
}
|
||||
}
|
||||
} finally {
|
||||
// 线程启动失败,需要从工作线程中移除对应的Worker
|
||||
if (! workerStarted)
|
||||
addWorkerFailed(w);
|
||||
}
|
||||
return workerStarted;
|
||||
}
|
||||
```
|
||||
|
||||
更多关于线程池源码分析的内容推荐这篇文章:《[JUC线程池ThreadPoolExecutor源码分析](http://www.throwable.club/2019/07/15/java-concurrency-thread-pool-executor/)》
|
||||
|
||||
现在,让我们在回到 4.1 节我们写的 Demo, 现在应该是不是很容易就可以搞懂它的原理了呢?
|
||||
|
||||
没搞懂的话,也没关系,可以看看我的分析:
|
||||
|
||||
> 我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的 5 个任务执行完成后,才会执行剩下的 5 个任务。
|
||||
> 我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的5个任务中如果有任务被执行完了,线程池就会去拿新的任务执行。
|
||||
|
||||
### 4.3 几个常见的对比
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user