update readme
This commit is contained in:
parent
6a776f81f8
commit
ddf924a7ce
144
README.md
144
README.md
@ -1 +1,143 @@
|
||||
# pytorch-detector
|
||||
# :zap:FastestDet:zap:
|
||||
* ***Faster! Stronger! Simpler!***
|
||||
* ***It has better single core reasoning performance and simpler feature map post-processing than Yolo-fastest***
|
||||
* ***In the ARM CPU of RK3568, the single core reasoning performance is 50% higher than Yolo-fastest***
|
||||
* ***The coco evaluation index increased by 3.8% compared with the map0.5 of Yolo-fastest***
|
||||
* ***算法介绍:https://zhuanlan.zhihu.com/p/536500269 交流qq群:1062122604***
|
||||
# Evaluating indicator/Benchmark
|
||||
Network|COCO mAP(0.5)|Resolution|Run Time(4xCore)|Run Time(1xCore)|FLOPs(G)|Params(M)
|
||||
:---:|:---:|:---:|:---:|:---:|:---:|:---:
|
||||
[Yolo-FastestV1.1](https://github.com/dog-qiuqiu/Yolo-Fastest/tree/master/ModelZoo/yolo-fastest-1.1_coco)|24.40 %|320X320|26.60 ms|75.74 ms|0.252|0.35M
|
||||
[Yolo-FastestV2](https://github.com/dog-qiuqiu/Yolo-FastestV2/tree/main/modelzoo)|24.10 %|352X352|23.8 ms|68.9 ms|0.212|0.25M
|
||||
FastestDet|27.8%|512X512|21.51ms|34.62ms|*|0.25M
|
||||
|
||||
* ***Test platform RK3568 CPU,Based on [NCNN](https://github.com/Tencent/ncnn)***
|
||||
# Improvement
|
||||
* Anchor-Free
|
||||
* Single scale detector head
|
||||
* Cross grid multiple candidate targets
|
||||
* Dynamic positive and negative sample allocation
|
||||
# How to use
|
||||
## Dependent installation
|
||||
* PIP
|
||||
```
|
||||
pip3 install -r requirements.txt
|
||||
```
|
||||
## Test
|
||||
* Picture test
|
||||
```
|
||||
python3 test.py --yaml configs/config.yaml --weight weights/weight_AP05\:0.248723_280-epoch.pth --img data/3.jpg
|
||||
```
|
||||
<div align=center>
|
||||
<img src="https://github.com/dog-qiuqiu/Yolo-FastestV2/blob/main/img/000139_result.png"> />
|
||||
</div>
|
||||
|
||||
## How to train
|
||||
### Building data sets(The dataset is constructed in the same way as darknet yolo)
|
||||
* The format of the data set is the same as that of Darknet Yolo, Each image corresponds to a .txt label file. The label format is also based on Darknet Yolo's data set label format: "category cx cy wh", where category is the category subscript, cx, cy are the coordinates of the center point of the normalized label box, and w, h are the normalized label box The width and height, .txt label file content example as follows:
|
||||
```
|
||||
11 0.344192634561 0.611 0.416430594901 0.262
|
||||
14 0.509915014164 0.51 0.974504249292 0.972
|
||||
```
|
||||
* The image and its corresponding label file have the same name and are stored in the same directory. The data file structure is as follows:
|
||||
```
|
||||
.
|
||||
├── train
|
||||
│ ├── 000001.jpg
|
||||
│ ├── 000001.txt
|
||||
│ ├── 000002.jpg
|
||||
│ ├── 000002.txt
|
||||
│ ├── 000003.jpg
|
||||
│ └── 000003.txt
|
||||
└── val
|
||||
├── 000043.jpg
|
||||
├── 000043.txt
|
||||
├── 000057.jpg
|
||||
├── 000057.txt
|
||||
├── 000070.jpg
|
||||
└── 000070.txt
|
||||
```
|
||||
* Generate a dataset path .txt file, the example content is as follows:
|
||||
|
||||
train.txt
|
||||
```
|
||||
/home/qiuqiu/Desktop/dataset/train/000001.jpg
|
||||
/home/qiuqiu/Desktop/dataset/train/000002.jpg
|
||||
/home/qiuqiu/Desktop/dataset/train/000003.jpg
|
||||
```
|
||||
val.txt
|
||||
```
|
||||
/home/qiuqiu/Desktop/dataset/val/000070.jpg
|
||||
/home/qiuqiu/Desktop/dataset/val/000043.jpg
|
||||
/home/qiuqiu/Desktop/dataset/val/000057.jpg
|
||||
```
|
||||
* Generate the .names category label file, the sample content is as follows:
|
||||
|
||||
category.names
|
||||
```
|
||||
person
|
||||
bicycle
|
||||
car
|
||||
motorbike
|
||||
...
|
||||
|
||||
```
|
||||
* The directory structure of the finally constructed training data set is as follows:
|
||||
```
|
||||
.
|
||||
├── category.names # .names category label file
|
||||
├── train # train dataset
|
||||
│ ├── 000001.jpg
|
||||
│ ├── 000001.txt
|
||||
│ ├── 000002.jpg
|
||||
│ ├── 000002.txt
|
||||
│ ├── 000003.jpg
|
||||
│ └── 000003.txt
|
||||
├── train.txt # train dataset path .txt file
|
||||
├── val # val dataset
|
||||
│ ├── 000043.jpg
|
||||
│ ├── 000043.txt
|
||||
│ ├── 000057.jpg
|
||||
│ ├── 000057.txt
|
||||
│ ├── 000070.jpg
|
||||
│ └── 000070.txt
|
||||
└── val.txt # val dataset path .txt file
|
||||
|
||||
```
|
||||
### Build the training .yaml configuration file
|
||||
* Reference./configs/config.yaml
|
||||
```
|
||||
DATASET:
|
||||
TRAIN: "/home/qiuqiu/Desktop/coco2017/train2017.txt" # Train dataset path .txt file
|
||||
VAL: "/home/qiuqiu/Desktop/coco2017/val2017.txt" # Val dataset path .txt file
|
||||
NAMES: "dataset/coco128/coco.names" # .names category label file
|
||||
MODEL:
|
||||
NC: 80 # Number of detection categories
|
||||
INPUT_WIDTH: 512 # The width of the model input image
|
||||
INPUT_HEIGHT: 512 # The height of the model input image
|
||||
TRAIN:
|
||||
LR: 0.001 # Train learn rate
|
||||
THRESH: 0.25 # ????
|
||||
WARMUP: true # Trun on warm up
|
||||
BATCH_SIZE: 64 # Batch size
|
||||
END_EPOCH: 350 # Train epichs
|
||||
MILESTIONES: # Declining learning rate steps
|
||||
- 150
|
||||
- 250
|
||||
- 300
|
||||
```
|
||||
### Train
|
||||
* Perform training tasks
|
||||
```
|
||||
python3 train.py --yaml configs/config.yaml
|
||||
```
|
||||
### Evaluation
|
||||
* Calculate map evaluation
|
||||
```
|
||||
python3 eval.py --yaml configs/config.yaml --weight weights/weight_AP05\:0.248723_280-epoch.pth
|
||||
```
|
||||
# Deploy
|
||||
## NCNN
|
||||
* Waiting for update
|
||||
# Reference
|
||||
* https://github.com/Tencent/ncnn
|
BIN
result.png
Normal file
BIN
result.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 290 KiB |
Loading…
x
Reference in New Issue
Block a user