diff --git a/README.md b/README.md
index af634f0..7906daa 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,143 @@
-# pytorch-detector
\ No newline at end of file
+# :zap:FastestDet:zap:
+* ***Faster! Stronger! Simpler!***
+* ***It has better single core reasoning performance and simpler feature map post-processing than Yolo-fastest***
+* ***In the ARM CPU of RK3568, the single core reasoning performance is 50% higher than Yolo-fastest***
+* ***The coco evaluation index increased by 3.8% compared with the map0.5 of Yolo-fastest***
+* ***算法介绍:https://zhuanlan.zhihu.com/p/536500269 交流qq群:1062122604***
+# Evaluating indicator/Benchmark
+Network|COCO mAP(0.5)|Resolution|Run Time(4xCore)|Run Time(1xCore)|FLOPs(G)|Params(M)
+:---:|:---:|:---:|:---:|:---:|:---:|:---:
+[Yolo-FastestV1.1](https://github.com/dog-qiuqiu/Yolo-Fastest/tree/master/ModelZoo/yolo-fastest-1.1_coco)|24.40 %|320X320|26.60 ms|75.74 ms|0.252|0.35M
+[Yolo-FastestV2](https://github.com/dog-qiuqiu/Yolo-FastestV2/tree/main/modelzoo)|24.10 %|352X352|23.8 ms|68.9 ms|0.212|0.25M
+FastestDet|27.8%|512X512|21.51ms|34.62ms|*|0.25M
+
+* ***Test platform RK3568 CPU,Based on [NCNN](https://github.com/Tencent/ncnn)***
+# Improvement
+* Anchor-Free
+* Single scale detector head
+* Cross grid multiple candidate targets
+* Dynamic positive and negative sample allocation
+# How to use
+## Dependent installation
+ * PIP
+ ```
+ pip3 install -r requirements.txt
+ ```
+## Test
+* Picture test
+ ```
+ python3 test.py --yaml configs/config.yaml --weight weights/weight_AP05\:0.248723_280-epoch.pth --img data/3.jpg
+ ```
+
+

/>
+
+
+## How to train
+### Building data sets(The dataset is constructed in the same way as darknet yolo)
+* The format of the data set is the same as that of Darknet Yolo, Each image corresponds to a .txt label file. The label format is also based on Darknet Yolo's data set label format: "category cx cy wh", where category is the category subscript, cx, cy are the coordinates of the center point of the normalized label box, and w, h are the normalized label box The width and height, .txt label file content example as follows:
+ ```
+ 11 0.344192634561 0.611 0.416430594901 0.262
+ 14 0.509915014164 0.51 0.974504249292 0.972
+ ```
+* The image and its corresponding label file have the same name and are stored in the same directory. The data file structure is as follows:
+ ```
+ .
+ ├── train
+ │ ├── 000001.jpg
+ │ ├── 000001.txt
+ │ ├── 000002.jpg
+ │ ├── 000002.txt
+ │ ├── 000003.jpg
+ │ └── 000003.txt
+ └── val
+ ├── 000043.jpg
+ ├── 000043.txt
+ ├── 000057.jpg
+ ├── 000057.txt
+ ├── 000070.jpg
+ └── 000070.txt
+ ```
+* Generate a dataset path .txt file, the example content is as follows:
+
+ train.txt
+ ```
+ /home/qiuqiu/Desktop/dataset/train/000001.jpg
+ /home/qiuqiu/Desktop/dataset/train/000002.jpg
+ /home/qiuqiu/Desktop/dataset/train/000003.jpg
+ ```
+ val.txt
+ ```
+ /home/qiuqiu/Desktop/dataset/val/000070.jpg
+ /home/qiuqiu/Desktop/dataset/val/000043.jpg
+ /home/qiuqiu/Desktop/dataset/val/000057.jpg
+ ```
+* Generate the .names category label file, the sample content is as follows:
+
+ category.names
+ ```
+ person
+ bicycle
+ car
+ motorbike
+ ...
+
+ ```
+* The directory structure of the finally constructed training data set is as follows:
+ ```
+ .
+ ├── category.names # .names category label file
+ ├── train # train dataset
+ │ ├── 000001.jpg
+ │ ├── 000001.txt
+ │ ├── 000002.jpg
+ │ ├── 000002.txt
+ │ ├── 000003.jpg
+ │ └── 000003.txt
+ ├── train.txt # train dataset path .txt file
+ ├── val # val dataset
+ │ ├── 000043.jpg
+ │ ├── 000043.txt
+ │ ├── 000057.jpg
+ │ ├── 000057.txt
+ │ ├── 000070.jpg
+ │ └── 000070.txt
+ └── val.txt # val dataset path .txt file
+
+ ```
+### Build the training .yaml configuration file
+* Reference./configs/config.yaml
+```
+DATASET:
+ TRAIN: "/home/qiuqiu/Desktop/coco2017/train2017.txt" # Train dataset path .txt file
+ VAL: "/home/qiuqiu/Desktop/coco2017/val2017.txt" # Val dataset path .txt file
+ NAMES: "dataset/coco128/coco.names" # .names category label file
+MODEL:
+ NC: 80 # Number of detection categories
+ INPUT_WIDTH: 512 # The width of the model input image
+ INPUT_HEIGHT: 512 # The height of the model input image
+TRAIN:
+ LR: 0.001 # Train learn rate
+ THRESH: 0.25 # ????
+ WARMUP: true # Trun on warm up
+ BATCH_SIZE: 64 # Batch size
+ END_EPOCH: 350 # Train epichs
+ MILESTIONES: # Declining learning rate steps
+ - 150
+ - 250
+ - 300
+```
+### Train
+* Perform training tasks
+ ```
+ python3 train.py --yaml configs/config.yaml
+ ```
+### Evaluation
+* Calculate map evaluation
+ ```
+ python3 eval.py --yaml configs/config.yaml --weight weights/weight_AP05\:0.248723_280-epoch.pth
+ ```
+# Deploy
+## NCNN
+* Waiting for update
+# Reference
+* https://github.com/Tencent/ncnn
\ No newline at end of file
diff --git a/result.png b/result.png
new file mode 100644
index 0000000..fa73b73
Binary files /dev/null and b/result.png differ