1
0
mirror of https://github.com/Snailclimb/JavaGuide synced 2025-06-16 18:10:13 +08:00

Update AQS原理以及AQS同步组件总结.md

This commit is contained in:
guide 2021-04-25 12:53:52 +08:00
parent 6af5f5367f
commit d5da28a273

View File

@ -28,11 +28,11 @@
### 1 AQS 简单介绍
AQS 的全称为AbstractQueuedSynchronizer这个类在 java.util.concurrent.locks 包下面。
AQS 的全称为(`AbstractQueuedSynchronizer`),这个类在 `java.util.concurrent.locks` 包下面。
![enter image description here](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/Java%20%E7%A8%8B%E5%BA%8F%E5%91%98%E5%BF%85%E5%A4%87%EF%BC%9A%E5%B9%B6%E5%8F%91%E7%9F%A5%E8%AF%86%E7%B3%BB%E7%BB%9F%E6%80%BB%E7%BB%93/AQS.png)
AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLockSemaphore其他的诸如 ReentrantReadWriteLockSynchronousQueueFutureTask(jdk1.7) 等等皆是基于 AQS 的。当然,我们自己也能利用 AQS 非常轻松容易地构造出符合我们自己需求的同步器。
AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 `ReentrantLock``Semaphore`,其他的诸如 `ReentrantReadWriteLock``SynchronousQueue``FutureTask`(jdk1.7) 等等皆是基于 AQS 的。当然,我们自己也能利用 AQS 非常轻松容易地构造出符合我们自己需求的同步器。
### 2 AQS 原理
@ -46,7 +46,7 @@ AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高
> CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列虚拟的双向队列即不存在队列实例仅存在结点之间的关联关系。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点Node来实现锁的分配。
看个 AQS(AbstractQueuedSynchronizer)原理图:
看个 AQS(`AbstractQueuedSynchronizer`)原理图:
![enter image description here](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/Java%20%E7%A8%8B%E5%BA%8F%E5%91%98%E5%BF%85%E5%A4%87%EF%BC%9A%E5%B9%B6%E5%8F%91%E7%9F%A5%E8%AF%86%E7%B3%BB%E7%BB%9F%E6%80%BB%E7%BB%93/CLH.png)
@ -79,16 +79,16 @@ protected final boolean compareAndSetState(int expect, int update) {
**1)Exclusive**(独占)
只有一个线程能执行,如 ReentrantLock。又可分为公平锁和非公平锁,ReentrantLock 同时支持两种锁,下面以 ReentrantLock 对这两种锁的定义做介绍:
只有一个线程能执行,如 `ReentrantLock`。又可分为公平锁和非公平锁,`ReentrantLock` 同时支持两种锁,下面以 `ReentrantLock` 对这两种锁的定义做介绍:
- 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
- 非公平锁:当线程要获取锁时,先通过两次 CAS 操作去抢锁,如果没抢到,当前线程再加入到队列中等待唤醒。
> 说明:下面这部分关于 `ReentrantLock` 源代码内容节选自https://www.javadoop.com/post/AbstractQueuedSynchronizer-2 ,这是一篇很不错文章,推荐阅读。
**下面来看 ReentrantLock 中相关的源代码:**
**下面来看 `ReentrantLock` 中相关的源代码:**
ReentrantLock 默认采用非公平锁,因为考虑获得更好的性能,通过 boolean 来决定是否用公平锁(传入 true 用公平锁)。
`ReentrantLock` 默认采用非公平锁,因为考虑获得更好的性能,通过 `boolean` 来决定是否用公平锁(传入 true 用公平锁)。
```java
/** Synchronizer providing all implementation mechanics */
@ -102,7 +102,7 @@ public ReentrantLock(boolean fair) {
}
```
ReentrantLock 中公平锁的 `lock` 方法
`ReentrantLock` 中公平锁的 `lock` 方法
```java
static final class FairSync extends Sync {
@ -187,7 +187,7 @@ final boolean nonfairTryAcquire(int acquires) {
总结:公平锁和非公平锁只有两处不同:
1. 非公平锁在调用 lock 后,首先就会调用 CAS 进行一次抢锁,如果这个时候恰巧锁没有被占用,那么直接就获取到锁返回了。
2. 非公平锁在 CAS 失败后,和公平锁一样都会进入到 tryAcquire 方法,在 tryAcquire 方法中如果发现锁这个时候被释放了state == 0非公平锁会直接 CAS 抢锁,但是公平锁会判断等待队列是否有线程处于等待状态,如果有则不去抢锁,乖乖排到后面。
2. 非公平锁在 CAS 失败后,和公平锁一样都会进入到 `tryAcquire` 方法,在 `tryAcquire` 方法中如果发现锁这个时候被释放了state == 0非公平锁会直接 CAS 抢锁,但是公平锁会判断等待队列是否有线程处于等待状态,如果有则不去抢锁,乖乖排到后面。
公平锁和非公平锁就这两点区别,如果这两次 CAS 都不成功,那么后面非公平锁和公平锁是一样的,都要进入到阻塞队列等待唤醒。
@ -195,9 +195,9 @@ final boolean nonfairTryAcquire(int acquires) {
**2)Share**(共享)
多个线程可同时执行,如 Semaphore/CountDownLatch。Semaphore、CountDownLatCh、 CyclicBarrier、ReadWriteLock 我们都会在后面讲到。
多个线程可同时执行,如 `Semaphore/CountDownLatch``Semaphore``CountDownLatCh``CyclicBarrier``ReadWriteLock` 我们都会在后面讲到。
ReentrantReadWriteLock 可以看成是组合式,因为 ReentrantReadWriteLock 也就是读写锁允许多个线程同时对某一资源进行读。
`ReentrantReadWriteLock` 可以看成是组合式,因为 `ReentrantReadWriteLock` 也就是读写锁允许多个线程同时对某一资源进行读。
不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等AQS 已经在上层已经帮我们实现好了。
@ -205,7 +205,7 @@ ReentrantReadWriteLock 可以看成是组合式,因为 ReentrantReadWriteLock
同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用):
1. 使用者继承 AbstractQueuedSynchronizer 并重写指定的方法。(这些重写方法很简单,无非是对于共享资源 state 的获取和释放)
1. 使用者继承 `AbstractQueuedSynchronizer` 并重写指定的方法。(这些重写方法很简单,无非是对于共享资源 state 的获取和释放)
2. 将 AQS 组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。
这和我们以往通过实现接口的方式有很大区别,这是模板方法模式很经典的一个运用,下面简单的给大家介绍一下模板方法模式,模板方法模式是一个很容易理解的设计模式之一。
@ -225,9 +225,9 @@ tryReleaseShared(int)//共享方式。尝试释放资源成功则返回true
默认情况下,每个方法都抛出 `UnsupportedOperationException`。 这些方法的实现必须是内部线程安全的并且通常应该简短而不是阻塞。AQS 类中的其他方法都是 final ,所以无法被其他类使用,只有这几个方法可以被其他类使用。
以 ReentrantLock 为例state 初始化为 0表示未锁定状态。A 线程 lock()时,会调用 tryAcquire()独占该锁并将 state+1。此后其他线程再 tryAcquire()时就会失败,直到 A 线程 unlock()到 state=0即释放锁为止其它线程才有机会获取该锁。当然释放锁之前A 线程自己是可以重复获取此锁的state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。
`ReentrantLock` 为例state 初始化为 0表示未锁定状态。A 线程 `lock()` 时,会调用 `tryAcquire()`独占该锁并将 state+1。此后其他线程再 `tryAcquire()` 时就会失败,直到 A 线程 unlock()到 state=0即释放锁为止其它线程才有机会获取该锁。当然释放锁之前A 线程自己是可以重复获取此锁的state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。
再以 CountDownLatch 以例,任务分为 N 个子线程去执行state 也初始化为 N注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后 countDown()一次state 会 CAS(Compare and Swap)减 1。等到所有子线程都执行完后(即 state=0),会 unpark()主调用线程,然后主调用线程就会从 await()函数返回,继续后余动作。
再以 `CountDownLatch` 以例,任务分为 N 个子线程去执行state 也初始化为 N注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后 `countDown()` 一次state 会 CAS(Compare and Swap)减 1。等到所有子线程都执行完后(即 state=0),会 unpark()主调用线程,然后主调用线程就会从 `await()` 函数返回,继续后余动作。
一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现`tryAcquire-tryRelease``tryAcquireShared-tryReleaseShared`中的一种即可。但 AQS 也支持自定义同步器同时实现独占和共享两种方式,如`ReentrantReadWriteLock`
@ -238,7 +238,7 @@ tryReleaseShared(int)//共享方式。尝试释放资源成功则返回true
### 3 Semaphore(信号量)-允许多个线程同时访问
**synchronized 和 ReentrantLock 都是一次只允许一个线程访问某个资源Semaphore(信号量)可以指定多个线程同时访问某个资源。**
**`synchronized``ReentrantLock` 都是一次只允许一个线程访问某个资源,`Semaphore`(信号量)可以指定多个线程同时访问某个资源。**
示例代码如下:
@ -285,7 +285,7 @@ public class SemaphoreExample1 {
}
```
执行 `acquire` 方法阻塞,直到有一个许可证可以获得然后拿走一个许可证;每个 `release` 方法增加一个许可证,这可能会释放一个阻塞的 acquire 方法。然而其实并没有实际的许可证这个对象Semaphore 只是维持了一个可获得许可证的数量。 Semaphore 经常用于限制获取某种资源的线程数量。
执行 `acquire` 方法阻塞,直到有一个许可证可以获得然后拿走一个许可证;每个 `release` 方法增加一个许可证,这可能会释放一个阻塞的 acquire 方法。然而,其实并没有实际的许可证这个对象,`Semaphore` 只是维持了一个可获得许可证的数量。 `Semaphore` 经常用于限制获取某种资源的线程数量。
当然一次也可以一次拿取和释放多个许可,不过一般没有必要这样做:
@ -297,12 +297,12 @@ semaphore.release(5);// 获取5个许可所以可运行线程数量为20/5=4
除了 `acquire`方法之外,另一个比较常用的与之对应的方法是`tryAcquire`方法,该方法如果获取不到许可就立即返回 false。
Semaphore 有两种模式,公平模式和非公平模式。
`Semaphore` 有两种模式,公平模式和非公平模式。
- **公平模式:** 调用 acquire 的顺序就是获取许可证的顺序,遵循 FIFO
- **非公平模式:** 抢占式的。
**Semaphore 对应的两个构造方法如下:**
**`Semaphore` 对应的两个构造方法如下:**
```java
public Semaphore(int permits) {
@ -316,21 +316,21 @@ Semaphore 有两种模式,公平模式和非公平模式。
**这两个构造方法,都必须提供许可的数量,第二个构造方法可以指定是公平模式还是非公平模式,默认非公平模式。**
[issue645 补充内容](https://github.com/Snailclimb/JavaGuide/issues/645) Semaphore 与 CountDownLatch 一样,也是共享锁的一种实现。它默认构造 AQS 的 state 为 permits。当执行任务的线程数量超出 permits,那么多余的线程将会被放入阻塞队列 Park,并自旋判断 state 是否大于 0。只有当 state 大于 0 的时候,阻塞的线程才能继续执行,此时先前执行任务的线程继续执行 release 方法release 方法使得 state 的变量会加 1那么自旋的线程便会判断成功。
如此,每次只有最多不超过 permits 数量的线程能自旋成功,便限制了执行任务线程的数量。
[issue645 补充内容](https://github.com/Snailclimb/JavaGuide/issues/645) `Semaphore``CountDownLatch` 一样,也是共享锁的一种实现。它默认构造 AQS 的 state 为 `permits`。当执行任务的线程数量超出 `permits`那么多余的线程将会被放入阻塞队列 Park,并自旋判断 state 是否大于 0。只有当 state 大于 0 的时候,阻塞的线程才能继续执行,此时先前执行任务的线程继续执行 `release()` 方法,`release()` 方法使得 state 的变量会加 1那么自旋的线程便会判断成功。
如此,每次只有最多不超过 `permits` 数量的线程能自旋成功,便限制了执行任务线程的数量。
由于篇幅问题,如果对 Semaphore 源码感兴趣的朋友可以看下这篇文章https://juejin.im/post/5ae755366fb9a07ab508adc6
由于篇幅问题,如果对 `Semaphore` 源码感兴趣的朋友可以看下这篇文章https://juejin.im/post/5ae755366fb9a07ab508adc6
### 4 CountDownLatch (倒计时器)
`CountDownLatch` 允许 `count` 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。
`CountDownLatch` 是共享锁的一种实现,它默认构造 AQS 的 `state` 值为 `count`。当线程使用 `countDown()` 方法时,其实使用了`tryReleaseShared`方法以 CAS 的操作来减少 `state`,直至 `state` 为 0 。当调用 `await()` 方法的时候,如果 `state` 不为 0那就证明任务还没有执行完毕`await()` 方法就会一直阻塞,也就是说 `await()` 方法之后的语句不会被执行。然后,`CountDownLatch` 会自旋 CAS 判断 `state == 0`,如果 `state == 0` 的话,就会释放所有等待的线程,`await()` 方法之后的语句得到执行。
`CountDownLatch` 是共享锁的一种实现,它默认构造 AQS 的 `state` 值为 `count`。当线程使用 `countDown()` 方法时,其实使用了`tryReleaseShared`方法以 CAS 的操作来减少 `state`,直至 `state` 为 0 。当调用 `await()` 方法的时候,如果 `state` 不为 0那就证明任务还没有执行完毕`await()` 方法就会一直阻塞,也就是说 `await()` 方法之后的语句不会被执行。然后,`CountDownLatch` 会自旋 CAS 判断 `state == 0`,如果 `state == 0` 的话,就会释放所有等待的线程,`await()` 方法之后的语句得到执行。
#### 4.1 CountDownLatch 的两种典型用法
1. 某一线程在开始运行前等待 n 个线程执行完毕。将 CountDownLatch 的计数器初始化为 n `new CountDownLatch(n)`,每当一个任务线程执行完毕,就将计数器减 1 `countdownlatch.countDown()`,当计数器的值变为 0 时,在`CountDownLatch上 await()` 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。
2. 实现多个线程开始执行任务的最大并行性。注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的 `CountDownLatch` 对象,将其计数器初始化为 1 `new CountDownLatch(1)`,多个线程在开始执行任务前首先 `coundownlatch.await()`,当主线程调用 countDown() 时,计数器变为 0多个线程同时被唤醒。
1. 某一线程在开始运行前等待 n 个线程执行完毕。将 `CountDownLatch` 的计数器初始化为 n `new CountDownLatch(n)`,每当一个任务线程执行完毕,就将计数器减 1 `countdownlatch.countDown()`,当计数器的值变为 0 时,在`CountDownLatch上 await()` 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。
2. 实现多个线程开始执行任务的最大并行性。注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的 `CountDownLatch` 对象,将其计数器初始化为 1 `new CountDownLatch(1)`,多个线程在开始执行任务前首先 `coundownlatch.await()`,当主线程调用 `countDown()` 时,计数器变为 0多个线程同时被唤醒。
#### 4.2 CountDownLatch 的使用示例
@ -393,27 +393,27 @@ for (int i = 0; i < threadCount-1; i++) {
这样就导致 `count` 的值没办法等于 0然后就会导致一直等待。
如果对 CountDownLatch 源码感兴趣的朋友,可以查看: [【JUC】JDK1.8 源码分析之 CountDownLatch](https://www.cnblogs.com/leesf456/p/5406191.html)
如果对 `CountDownLatch` 源码感兴趣的朋友,可以查看: [【JUC】JDK1.8 源码分析之 CountDownLatch](https://www.cnblogs.com/leesf456/p/5406191.html)
#### 4.3 CountDownLatch 的不足
CountDownLatch 是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当 CountDownLatch 使用完毕后,它不能再次被使用。
`CountDownLatch` 是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当 `CountDownLatch` 使用完毕后,它不能再次被使用。
#### 4.4 CountDownLatch 相常见面试题
解释一下 CountDownLatch 概念?
解释一下 `CountDownLatch` 概念?
CountDownLatch 和 CyclicBarrier 的不同之处?
`CountDownLatch``CyclicBarrier` 的不同之处?
给出一些 CountDownLatch 使用的例子?
给出一些 `CountDownLatch` 使用的例子?
CountDownLatch 类中主要的方法?
`CountDownLatch` 类中主要的方法?
### 5 CyclicBarrier(循环栅栏)
CyclicBarrier 和 CountDownLatch 非常类似,它也可以实现线程间的技术等待,但是它的功能比 CountDownLatch 更加复杂和强大。主要应用场景和 CountDownLatch 类似。
`CyclicBarrier``CountDownLatch` 非常类似,它也可以实现线程间的技术等待,但是它的功能比 `CountDownLatch` 更加复杂和强大。主要应用场景和 `CountDownLatch` 类似。
> CountDownLatch 的实现是基于 AQS 的,而 CycliBarrier 是基于 ReentrantLock(ReentrantLock 也属于 AQS 同步器)和 Condition 的.
> `CountDownLatch` 的实现是基于 AQS 的,而 `CycliBarrier` 是基于 `ReentrantLock`(`ReentrantLock` 也属于 AQS 同步器)和 `Condition` 的.
CyclicBarrier 的字面意思是可循环使用Cyclic的屏障Barrier。它要做的事情是让一组线程到达一个屏障也可以叫同步点时被阻塞直到最后一个线程到达屏障时屏障才会开门所有被屏障拦截的线程才会继续干活。CyclicBarrier 默认的构造方法是 `CyclicBarrier(int parties)`,其参数表示屏障拦截的线程数量,每个线程调用`await`方法告诉 CyclicBarrier 我已经到达了屏障,然后当前线程被阻塞。
@ -436,7 +436,7 @@ public CyclicBarrier(int parties, Runnable barrierAction) {
#### 5.1 CyclicBarrier 的应用场景
CyclicBarrier 可以用于多线程计算数据,最后合并计算结果的应用场景。比如我们用一个 Excel 保存了用户所有银行流水,每个 Sheet 保存一个帐户近一年的每笔银行流水,现在需要统计用户的日均银行流水,先用多线程处理每个 sheet 里的银行流水,都执行完之后,得到每个 sheet 的日均银行流水,最后,再用 barrierAction 用这些线程的计算结果,计算出整个 Excel 的日均银行流水。
`CyclicBarrier` 可以用于多线程计算数据,最后合并计算结果的应用场景。比如我们用一个 Excel 保存了用户所有银行流水,每个 Sheet 保存一个帐户近一年的每笔银行流水,现在需要统计用户的日均银行流水,先用多线程处理每个 sheet 里的银行流水,都执行完之后,得到每个 sheet 的日均银行流水,最后,再用 barrierAction 用这些线程的计算结果,计算出整个 Excel 的日均银行流水。
#### 5.2 CyclicBarrier 的使用示例
@ -519,7 +519,7 @@ threadnum:6is finish
可以看到当线程数量也就是请求数量达到我们定义的 5 个的时候, `await`方法之后的方法才被执行。
另外CyclicBarrier 还提供一个更高级的构造函数`CyclicBarrier(int parties, Runnable barrierAction)`,用于在线程到达屏障时,优先执行`barrierAction`,方便处理更复杂的业务场景。示例代码如下:
另外,`CyclicBarrier` 还提供一个更高级的构造函数`CyclicBarrier(int parties, Runnable barrierAction)`,用于在线程到达屏障时,优先执行`barrierAction`,方便处理更复杂的业务场景。示例代码如下:
```java
/**
@ -597,7 +597,7 @@ threadnum:7is finish
#### 5.3 `CyclicBarrier`源码分析
当调用 `CyclicBarrier` 对象调用 `await()` 方法时,实际上调用的是`dowait(false, 0L)`方法。 `await()` 方法就像树立起一个栅栏的行为一样,将线程挡住了,当拦住的线程数量达到 parties 的值时,栅栏才会打开,线程才得以通过执行。
当调用 `CyclicBarrier` 对象调用 `await()` 方法时,实际上调用的是`dowait(false, 0L)`方法。 `await()` 方法就像树立起一个栅栏的行为一样,将线程挡住了,当拦住的线程数量达到 `parties` 的值时,栅栏才会打开,线程才得以通过执行。
```java
public int await() throws InterruptedException, BrokenBarrierException {
@ -698,18 +698,18 @@ threadnum:7is finish
**下面这个是国外一个大佬的回答:**
CountDownLatch 是计数器,只能使用一次,而 CyclicBarrier 的计数器提供 reset 功能,可以多次使用。但是我不那么认为它们之间的区别仅仅就是这么简单的一点。我们来从 jdk 作者设计的目的来看javadoc 是这么描述它们的:
`CountDownLatch` 是计数器,只能使用一次,而 `CyclicBarrier` 的计数器提供 `reset` 功能,可以多次使用。但是我不那么认为它们之间的区别仅仅就是这么简单的一点。我们来从 jdk 作者设计的目的来看javadoc 是这么描述它们的:
> CountDownLatch: A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.(CountDownLatch: 一个或者多个线程,等待其他多个线程完成某件事情之后才能执行;)
> CyclicBarrier : A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point.(CyclicBarrier : 多个线程互相等待,直到到达同一个同步点,再继续一起执行。)
对于 CountDownLatch 来说,重点是“一个线程(多个线程)等待”,而其他的 N 个线程在完成“某件事情”之后,可以终止,也可以等待。而对于 CyclicBarrier重点是多个线程在任意一个线程没有完成所有的线程都必须等待。
对于 `CountDownLatch` 来说,重点是“一个线程(多个线程)等待”,而其他的 N 个线程在完成“某件事情”之后,可以终止,也可以等待。而对于 `CyclicBarrier`,重点是多个线程,在任意一个线程没有完成,所有的线程都必须等待。
CountDownLatch 是计数器,线程完成一个记录一个,只不过计数不是递增而是递减,而 CyclicBarrier 更像是一个阀门,需要所有线程都到达,阀门才能打开,然后继续执行。
`CountDownLatch` 是计数器,线程完成一个记录一个,只不过计数不是递增而是递减,而 `CyclicBarrier` 更像是一个阀门,需要所有线程都到达,阀门才能打开,然后继续执行。
### 6 ReentrantLock 和 ReentrantReadWriteLock
ReentrantLock 和 synchronized 的区别在上面已经讲过了这里就不多做讲解。另外,需要注意的是:读写锁 ReentrantReadWriteLock 可以保证多个线程可以同时读,所以在读操作远大于写操作的时候,读写锁就非常有用了。
`ReentrantLock``synchronized` 的区别在上面已经讲过了这里就不多做讲解。另外,需要注意的是:读写锁 `ReentrantReadWriteLock` 可以保证多个线程可以同时读,所以在读操作远大于写操作的时候,读写锁就非常有用了。
### 参考
@ -725,4 +725,4 @@ ReentrantLock 和 synchronized 的区别在上面已经讲过了这里就不多
**Java 工程师必备学习资源:** 一些 Java 工程师常用学习资源公众号后台回复关键字 **“1”** 即可免费无套路获取。
![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png)
![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png)