mirror of
https://github.com/Snailclimb/JavaGuide
synced 2025-06-20 22:17:09 +08:00
fix typo
This commit is contained in:
parent
4685dd8a5c
commit
a7a2225f07
@ -39,7 +39,7 @@
|
||||
|
||||

|
||||
|
||||
如图所示,当字符串存储要加入到布隆过滤器中时,该字符串首先由多个哈希函数生成不同的哈希值,然后在对应的位数组的下表的元素设置为 1(当位数组初始化时 ,所有位置均为0)。当第二次存储相同字符串时,因为先前的对应位置已设置为 1,所以很容易知道此值已经存在(去重非常方便)。
|
||||
如图所示,当字符串存储要加入到布隆过滤器中时,该字符串首先由多个哈希函数生成不同的哈希值,然后将对应的位数组的下标设置为 1(当位数组初始化时,所有位置均为0)。当第二次存储相同字符串时,因为先前的对应位置已设置为 1,所以很容易知道此值已经存在(去重非常方便)。
|
||||
|
||||
如果我们需要判断某个字符串是否在布隆过滤器中时,只需要对给定字符串再次进行相同的哈希计算,得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。
|
||||
|
||||
@ -224,7 +224,7 @@ true
|
||||
System.out.println(filter.mightContain(2));
|
||||
```
|
||||
|
||||
在我们的示例中,当`mightContain()` 方法返回*true*时,我们可以99%确定该元素在过滤器中,当过滤器返回*false*时,我们可以100%确定该元素不存在于过滤器中。
|
||||
在我们的示例中,当`mightContain()` 方法返回 *true* 时,我们可以99%确定该元素在过滤器中,当过滤器返回 *false* 时,我们可以100%确定该元素不存在于过滤器中。
|
||||
|
||||
**Guava 提供的布隆过滤器的实现还是很不错的(想要详细了解的可以看一下它的源码实现),但是它有一个重大的缺陷就是只能单机使用(另外,容量扩展也不容易),而现在互联网一般都是分布式的场景。为了解决这个问题,我们就需要用到 Redis 中的布隆过滤器了。**
|
||||
|
||||
@ -234,7 +234,7 @@ true
|
||||
|
||||
Redis v4.0 之后有了 Module(模块/插件) 功能,Redis Modules 让 Redis 可以使用外部模块扩展其功能 。布隆过滤器就是其中的 Module。详情可以查看 Redis 官方对 Redis Modules 的介绍 :https://redis.io/modules
|
||||
|
||||
另外,官网推荐了一个 RedisBloom 作为 Redis 布隆过滤器的 Module,地址:https://github.com/RedisBloom/RedisBloom. 其他还有:
|
||||
另外,官网推荐了一个 RedisBloom 作为 Redis 布隆过滤器的 Module,地址:https://github.com/RedisBloom/RedisBloom。其他还有:
|
||||
|
||||
- redis-lua-scaling-bloom-filter(lua 脚本实现):https://github.com/erikdubbelboer/redis-lua-scaling-bloom-filter
|
||||
- pyreBloom(Python中的快速Redis 布隆过滤器) :https://github.com/seomoz/pyreBloom
|
||||
|
Loading…
x
Reference in New Issue
Block a user