https://labs.ripe.net/Members/fergalc/ixp-traffic-during-stratos-skydive
+ 6. **RFC(Request For Comments)** :意思是“请求评议”,包含了关于 Internet 几乎所有的重要的文字资料。 7. **广域网 WAN(Wide Area Network)** :任务是通过长距离运送主机发送的数据。 8. **城域网 MAN(Metropolitan Area Network)**:用来将多个局域网进行互连。 9. **局域网 LAN(Local Area Network)** : 学校或企业大多拥有多个互连的局域网。 + + + +http://conexionesmanwman.blogspot.com/
+ 10. **个人区域网 PAN(Personal Area Network)** :在个人工作的地方把属于个人使用的电子设备用无线技术连接起来的网络 。 -11. **端系统(end system)** :处在因特网边缘的部分即是连接在因特网上的所有的主机。 + + + +https://www.itrelease.com/2018/07/advantages-and-disadvantages-of-personal-area-network-pan/
+ 12. **分组(packet )** :因特网中传送的数据单元。由首部 header 和数据段组成。分组又称为包,首部可称为包头。 -13. **存储转发(store and forward )** :路由器收到一个分组,先存储下来,再检查其首部,查找转发表,按照首部中的目的地址,找到合适的接口转发出去。 +13. **存储转发(store and forward )** :路由器收到一个分组,先检查分组是否正确,并过滤掉冲突包错误。确定包正确后,取出目的地址,通过查找表找到想要发送的输出端口地址,然后将该包发送出去。 + + + 14. **带宽(bandwidth)** :在计算机网络中,表示在单位时间内从网络中的某一点到另一点所能通过的“最高数据率”。常用来表示网络的通信线路所能传送数据的能力。单位是“比特每秒”,记为 b/s。 15. **吞吐量(throughput )** :表示在单位时间内通过某个网络(或信道、接口)的数据量。吞吐量更经常地用于对现实世界中的网络的一种测量,以便知道实际上到底有多少数据量能够通过网络。吞吐量受网络的带宽或网络的额定速率的限制。 @@ -69,13 +91,13 @@ 9. 网络协议即协议,是为进行网络中的数据交换而建立的规则。计算机网络的各层以及其协议集合,称为网络的体系结构。 10. **五层体系结构由应用层,运输层,网络层(网际层),数据链路层,物理层组成。运输层最主要的协议是 TCP 和 UDP 协议,网络层最重要的协议是 IP 协议。** - + 下面的内容会介绍计算机网络的五层体系结构:**物理层+数据链路层+网络层(网际层)+运输层+应用层**。 ## 2. 物理层(Physical Layer) - + ### 2.1. 基本术语 @@ -85,17 +107,28 @@ 4. **单工(simplex )** : 只能有一个方向的通信而没有反方向的交互。 5. **半双工(half duplex )** :通信的双方都可以发送信息,但不能双方同时发送(当然也就不能同时接收)。 6. **全双工(full duplex)** : 通信的双方可以同时发送和接收信息。 -7. **奈氏准则** : 在任何信道中,码元的传输的效率是有上限的,传输速率超过此上限,就会出现严重的码间串扰问题,使接收端对码元的判决(即识别)成为不可能。 -8. **基带信号(baseband signal)** : 来自信源的信号。指没有经过调制的数字信号或模拟信号。 -9. **带通(频带)信号(bandpass signal)** :把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道中传输(即仅在一段频率范围内能够通过信道),这里调制过后的信号就是带通信号。 -10. **调制(modulation )** : 对信号源的信息进行处理后加到载波信号上,使其变为适合在信道传输的形式的过程。 -11. **信噪比(signal-to-noise ratio )** : 指信号的平均功率和噪声的平均功率之比,记为 S/N。信噪比(dB)=10\*log10(S/N)。 -12. **信道复用(channel multiplexing )** :指多个用户共享同一个信道。(并不一定是同时)。 -13. **比特率(bit rate )** :单位时间(每秒)内传送的比特数。 -14. **波特率(baud rate)** :单位时间载波调制状态改变的次数。针对数据信号对载波的调制速率。 -15. **复用(multiplexing)** :共享信道的方法。 -16. **ADSL(Asymmetric Digital Subscriber Line )** :非对称数字用户线。 -17. **光纤同轴混合网(HFC 网)** :在目前覆盖范围很广的有线电视网的基础上开发的一种居民宽带接入网 + + + +7. **失真**:失去真实性,主要是指接受到的信号和发送的信号不同,有磨损和衰减。影响失真程度的因素:1.码元传输速率 2.信号传输距离 3.噪声干扰 4.传输媒体质量 + + + +8. **奈氏准则** : 在任何信道中,码元的传输的效率是有上限的,传输速率超过此上限,就会出现严重的码间串扰问题,使接收端对码元的判决(即识别)成为不可能。 +9. **香农定理** :在带宽受限且有噪声的信道中,为了不产生误差,信息的数据传输速率有上限值。 +10. **基带信号(baseband signal)** : 来自信源的信号。指没有经过调制的数字信号或模拟信号。 +11. **带通(频带)信号(bandpass signal)** :把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道中传输(即仅在一段频率范围内能够通过信道),这里调制过后的信号就是带通信号。 +12. **调制(modulation )** : 对信号源的信息进行处理后加到载波信号上,使其变为适合在信道传输的形式的过程。 +13. **信噪比(signal-to-noise ratio )** : 指信号的平均功率和噪声的平均功率之比,记为 S/N。信噪比(dB)=10\*log10(S/N)。 +14. **信道复用(channel multiplexing )** :指多个用户共享同一个信道。(并不一定是同时)。 + + + +15. **比特率(bit rate )** :单位时间(每秒)内传送的比特数。 +16. **波特率(baud rate)** :单位时间载波调制状态改变的次数。针对数据信号对载波的调制速率。 +17. **复用(multiplexing)** :共享信道的方法。 +18. **ADSL(Asymmetric Digital Subscriber Line )** :非对称数字用户线。 +19. **光纤同轴混合网(HFC 网)** :在目前覆盖范围很广的有线电视网的基础上开发的一种居民宽带接入网 ### 2.2. 重要知识点总结 @@ -131,7 +164,7 @@ ## 3. 数据链路层(Data Link Layer) - + ### 3.1. 基本术语 @@ -142,8 +175,11 @@ 5. **MTU(Maximum Transfer Uint )** :最大传送单元。帧的数据部分的的长度上限。 6. **误码率 BER(Bit Error Rate )** :在一段时间内,传输错误的比特占所传输比特总数的比率。 7. **PPP(Point-to-Point Protocol )** :点对点协议。即用户计算机和 ISP 进行通信时所使用的数据链路层协议。以下是 PPP 帧的示意图: -  +  8. **MAC 地址(Media Access Control 或者 Medium Access Control)** :意译为媒体访问控制,或称为物理地址、硬件地址,用来定义网络设备的位置。在 OSI 模型中,第三层网络层负责 IP 地址,第二层数据链路层则负责 MAC 地址。因此一个主机会有一个 MAC 地址,而每个网络位置会有一个专属于它的 IP 地址 。地址是识别某个系统的重要标识符,“名字指出我们所要寻找的资源,地址指出资源所在的地方,路由告诉我们如何到达该处。 + + + 9. **网桥(bridge)** :一种用于数据链路层实现中继,连接两个或多个局域网的网络互连设备。 10. **交换机(switch )** :广义的来说,交换机指的是一种通信系统中完成信息交换的设备。这里工作在数据链路层的交换机指的是交换式集线器,其实质是一个多接口的网桥 @@ -171,7 +207,7 @@ ## 4. 网络层(Network Layer) - + ### 4.1. 基本术语 @@ -199,7 +235,7 @@ ## 5. 传输层(Transport Layer) - + ### 5.1. 基本术语 @@ -208,6 +244,9 @@ 3. **传输层的复用与分用** :复用指发送方不同的进程都可以通过统一个运输层协议传送数据。分用指接收方的运输层在剥去报文的首部后能把这些数据正确的交付到目的应用进程。 4. **TCP(Transmission Control Protocol)** :传输控制协议。 5. **UDP(User Datagram Protocol)** :用户数据报协议。 + + + 6. **端口(port) ** :端口的目的是为了确认对方机器是那个进程在于自己进行交互,比如 MSN 和 QQ 的端口不同,如果没有端口就可能出现 QQ 进程和 MSN 交互错误。端口又称协议端口号。 7. **停止等待协议(stop-and-wait)** :指发送方每发送完一个分组就停止发送,等待对方确认,在收到确认之后在发送下一个分组。 8. **流量控制** : 就是让发送方的发送速率不要太快,既要让接收方来得及接收,也不要使网络发生拥塞。 @@ -249,24 +288,45 @@ ## 6. 应用层(Application Layer) - + ### 6.1. 基本术语 -1. **域名系统(DNS)** :DNS(Domain Name System,域名系统),万维网上作为域名和 IP 地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的 IP 数串。通过域名,最终得到该域名对应的 IP 地址的过程叫做域名解析(或主机名解析)。DNS 协议运行在 UDP 协议之上,使用端口号 53。在 RFC 文档中 RFC 2181 对 DNS 有规范说明,RFC 2136 对 DNS 的动态更新进行说明,RFC 2308 对 DNS 查询的反向缓存进行说明。 +1. **域名系统(DNS)** :域名系统(DNS,Domain Name System)将人类可读的域名 (例如,www.baidu.com) 转换为机器可读的 IP 地址 (例如,220.181.38.148)。我们可以将其理解为专为互联网设计的电话薄。 + + + +https://www.seobility.net/en/wiki/HTTP_headers
+ 2. **文件传输协议(FTP)** :FTP 是 File TransferProtocol(文件传输协议)的英文简称,而中文简称为“文传协议”。用于 Internet 上的控制文件的双向传输。同时,它也是一个应用程序(Application)。基于不同的操作系统有不同的 FTP 应用程序,而所有这些应用程序都遵守同一种协议以传输文件。在 FTP 的使用当中,用户经常遇到两个概念:"下载"(Download)和"上传"(Upload)。 "下载"文件就是从远程主机拷贝文件至自己的计算机上;"上传"文件就是将文件从自己的计算机中拷贝至远程主机上。用 Internet 语言来说,用户可通过客户机程序向(从)远程主机上传(下载)文件。 + + + 3. **简单文件传输协议(TFTP)** :TFTP(Trivial File Transfer Protocol,简单文件传输协议)是 TCP/IP 协议族中的一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂、开销不大的文件传输服务。端口号为 69。 4. **远程终端协议(TELENET)** :Telnet 协议是 TCP/IP 协议族中的一员,是 Internet 远程登陆服务的标准协议和主要方式。它为用户提供了在本地计算机上完成远程主机工作的能力。在终端使用者的电脑上使用 telnet 程序,用它连接到服务器。终端使用者可以在 telnet 程序中输入命令,这些命令会在服务器上运行,就像直接在服务器的控制台上输入一样。可以在本地就能控制服务器。要开始一个 telnet 会话,必须输入用户名和密码来登录服务器。Telnet 是常用的远程控制 Web 服务器的方法。 5. **万维网(WWW)** :WWW 是环球信息网的缩写,(亦作“Web”、“WWW”、“'W3'”,英文全称为“World Wide Web”),中文名字为“万维网”,"环球网"等,常简称为 Web。分为 Web 客户端和 Web 服务器程序。WWW 可以让 Web 客户端(常用浏览器)访问浏览 Web 服务器上的页面。是一个由许多互相链接的超文本组成的系统,通过互联网访问。在这个系统中,每个有用的事物,称为一样“资源”;并且由一个全局“统一资源标识符”(URI)标识;这些资源通过超文本传输协议(Hypertext Transfer Protocol)传送给用户,而后者通过点击链接来获得资源。万维网联盟(英语:World Wide Web Consortium,简称 W3C),又称 W3C 理事会。1994 年 10 月在麻省理工学院(MIT)计算机科学实验室成立。万维网联盟的创建者是万维网的发明者蒂姆·伯纳斯-李。万维网并不等同互联网,万维网只是互联网所能提供的服务其中之一,是靠着互联网运行的一项服务。 6. **万维网的大致工作工程:** - + 7. **统一资源定位符(URL)** :统一资源定位符是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址。互联网上的每个文件都有一个唯一的 URL,它包含的信息指出文件的位置以及浏览器应该怎么处理它。 8. **超文本传输协议(HTTP)** :超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议。所有的 WWW 文件都必须遵守这个标准。设计 HTTP 最初的目的是为了提供一种发布和接收 HTML 页面的方法。1960 年美国人 Ted Nelson 构思了一种通过计算机处理文本信息的方法,并称之为超文本(hypertext),这成为了 HTTP 超文本传输协议标准架构的发展根基。 -9. **代理服务器(Proxy Server)** : 代理服务器(Proxy Server)是一种网络实体,它又称为万维网高速缓存。 代理服务器把最近的一些请求和响应暂存在本地磁盘中。当新请求到达时,若代理服务器发现这个请求与暂时存放的的请求相同,就返回暂存的响应,而不需要按 URL 的地址再次去互联网访问该资源。代理服务器可在客户端或服务器工作,也可以在中间系统工作。 -10. **简单邮件传输协议(SMTP)** : SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。 SMTP 协议属于 TCP/IP 协议簇,它帮助每台计算机在发送或中转信件时找到下一个目的地。 通过 SMTP 协议所指定的服务器,就可以把 E-mail 寄到收信人的服务器上了,整个过程只要几分钟。SMTP 服务器则是遵循 SMTP 协议的发送邮件服务器,用来发送或中转发出的电子邮件。 + +HTTP 协议的本质就是一种浏览器与服务器之间约定好的通信格式。HTTP 的原理如下图所示: + + + +10. **代理服务器(Proxy Server)** : 代理服务器(Proxy Server)是一种网络实体,它又称为万维网高速缓存。 代理服务器把最近的一些请求和响应暂存在本地磁盘中。当新请求到达时,若代理服务器发现这个请求与暂时存放的的请求相同,就返回暂存的响应,而不需要按 URL 的地址再次去互联网访问该资源。代理服务器可在客户端或服务器工作,也可以在中间系统工作。 +11. **简单邮件传输协议(SMTP)** : SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。 SMTP 协议属于 TCP/IP 协议簇,它帮助每台计算机在发送或中转信件时找到下一个目的地。 通过 SMTP 协议所指定的服务器,就可以把 E-mail 寄到收信人的服务器上了,整个过程只要几分钟。SMTP 服务器则是遵循 SMTP 协议的发送邮件服务器,用来发送或中转发出的电子邮件。 + + + +https://www.campaignmonitor.com/resources/knowledge-base/what-is-the-code-that-makes-bcc-or-cc-operate-in-an-email/
+ 11. **搜索引擎** :搜索引擎(Search Engine)是指根据一定的策略、运用特定的计算机程序从互联网上搜集信息,在对信息进行组织和处理后,为用户提供检索服务,将用户检索相关的信息展示给用户的系统。搜索引擎包括全文索引、目录索引、元搜索引擎、垂直搜索引擎、集合式搜索引擎、门户搜索引擎与免费链接列表等。 + + + 12. **垂直搜索引擎** :垂直搜索引擎是针对某一个行业的专业搜索引擎,是搜索引擎的细分和延伸,是对网页库中的某类专门的信息进行一次整合,定向分字段抽取出需要的数据进行处理后再以某种形式返回给用户。垂直搜索是相对通用搜索引擎的信息量大、查询不准确、深度不够等提出来的新的搜索引擎服务模式,通过针对某一特定领域、某一特定人群或某一特定需求提供的有一定价值的信息和相关服务。其特点就是“专、精、深”,且具有行业色彩,相比较通用搜索引擎的海量信息无序化,垂直搜索引擎则显得更加专注、具体和深入。 13. **全文索引** :全文索引技术是目前搜索引擎的关键技术。试想在 1M 大小的文件中搜索一个词,可能需要几秒,在 100M 的文件中可能需要几十秒,如果在更大的文件中搜索那么就需要更大的系统开销,这样的开销是不现实的。所以在这样的矛盾下出现了全文索引技术,有时候有人叫倒排文档技术。 14. **目录索引** :目录索引( search index/directory),顾名思义就是将网站分门别类地存放在相应的目录中,因此用户在查询信息时,可选择关键词搜索,也可按分类目录逐层查找。 diff --git a/docs/operating-system/Shell.md b/docs/operating-system/Shell.md index 4a89061f..c88ebdd6 100644 --- a/docs/operating-system/Shell.md +++ b/docs/operating-system/Shell.md @@ -262,7 +262,7 @@ echo $length2 #输出:5 echo ${array[2]} #输出:3 unset array[1]# 删除下标为1的元素也就是删除第二个元素 for i in ${array[@]};do echo $i ;done # 遍历数组,输出: 1 3 4 5 -unset arr_number; # 删除数组中的所有元素 +unset array; # 删除数组中的所有元素 for i in ${array[@]};do echo $i ;done # 遍历数组,数组元素为空,没有任何输出内容 ``` diff --git a/docs/operating-system/basis.md b/docs/operating-system/basis.md index af49fd46..ba0c8b53 100644 --- a/docs/operating-system/basis.md +++ b/docs/operating-system/basis.md @@ -64,7 +64,7 @@ 🙋 **我:** 好的! 下图是 Java 内存区域,我们从 JVM 的角度来说一下线程和进程之间的关系吧! -> 如果你对 Java 内存区域 (运行时数据区) 这部分知识不太了解的话可以阅读一下这篇文章:[《可能是把 Java 内存区域讲的最清楚的一篇文章》](<[https://snailclimb.gitee.io/javaguide/#/docs/java/jvm/Java%E5%86%85%E5%AD%98%E5%8C%BA%E5%9F%9F](https://snailclimb.gitee.io/javaguide/#/docs/java/jvm/Java内存区域)>) +> 如果你对 Java 内存区域 (运行时数据区) 这部分知识不太了解的话可以阅读一下这篇文章:[《可能是把 Java 内存区域讲的最清楚的一篇文章》](https://snailclimb.gitee.io/javaguide/#/docs/java/jvm/Java内存区域)  diff --git a/docs/system-design/distributed-system/message-queue/message-queue.md b/docs/system-design/distributed-system/message-queue/message-queue.md index a0db7269..ed7461eb 100644 --- a/docs/system-design/distributed-system/message-queue/message-queue.md +++ b/docs/system-design/distributed-system/message-queue/message-queue.md @@ -1,22 +1,3 @@ - - -- [消息队列其实很简单](#消息队列其实很简单) - - [一 什么是消息队列](#一-什么是消息队列) - - [二 为什么要用消息队列](#二-为什么要用消息队列) - - [\(1\) 通过异步处理提高系统性能(削峰、减少响应所需时间)](#1-通过异步处理提高系统性能削峰减少响应所需时间) - - [\(2\) 降低系统耦合性](#2-降低系统耦合性) - - [三 使用消息队列带来的一些问题](#三-使用消息队列带来的一些问题) - - [四 JMS VS AMQP](#四-jms-vs-amqp) - - [4.1 JMS](#41-jms) - - [4.1.1 JMS 简介](#411-jms-简介) - - [4.1.2 JMS两种消息模型](#412-jms两种消息模型) - - [4.1.3 JMS 五种不同的消息正文格式](#413-jms-五种不同的消息正文格式) - - [4.2 AMQP](#42-amqp) - - [4.3 JMS vs AMQP](#43-jms-vs-amqp) - - [五 常见的消息队列对比](#五-常见的消息队列对比) - - - # 消息队列其实很简单 @@ -24,36 +5,48 @@ ## 一 什么是消息队列 -我们可以把消息队列比作是一个存放消息的容器,当我们需要使用消息的时候可以取出消息供自己使用。消息队列是分布式系统中重要的组件,使用消息队列主要是为了通过异步处理提高系统性能和削峰、降低系统耦合性。目前使用较多的消息队列有ActiveMQ,RabbitMQ,Kafka,RocketMQ,我们后面会一一对比这些消息队列。 +**我们可以把消息队列看作是一个存放消息的容器,当我们需要使用消息的时候,直接从容器中取出消息供自己使用即可。** -另外,我们知道队列 Queue 是一种先进先出的数据结构,所以消费消息时也是按照顺序来消费的。比如生产者发送消息1,2,3...对于消费者就会按照1,2,3...的顺序来消费。但是偶尔也会出现消息被消费的顺序不对的情况,比如某个消息消费失败又或者一个 queue 多个consumer 也会导致消息被消费的顺序不对,我们一定要保证消息被消费的顺序正确。 + -除了上面说的消息消费顺序的问题,使用消息队列,我们还要考虑如何保证消息不被重复消费?如何保证消息的可靠性传输(如何处理消息丢失的问题)?......等等问题。所以说使用消息队列也不是十全十美的,使用它也会让系统可用性降低、复杂度提高,另外需要我们保障一致性等问题。 +消息队列是分布式系统中重要的组件之一。使用消息队列主要是为了通过异步处理提高系统性能和削峰、降低系统耦合性。 + +我们知道队列 Queue 是一种先进先出的数据结构,所以消费消息时也是按照顺序来消费的。 ## 二 为什么要用消息队列 -我觉得使用消息队列主要有两点好处: +我觉得使用消息队列主要有三点好处: -1. 通过异步处理提高系统性能(削峰、减少响应所需时间) -2. 降低系统耦合性。 +1. **通过异步处理提高系统性能(减少响应所需时间)。** +2. **削峰/限流** +3. **降低系统耦合性。** 如果在面试的时候你被面试官问到这个问题的话,一般情况是你在你的简历上涉及到消息队列这方面的内容,这个时候推荐你结合你自己的项目来回答。 《大型网站技术架构》第四章和第七章均有提到消息队列对应用性能及扩展性的提升。 -### (1) 通过异步处理提高系统性能(削峰、减少响应所需时间) +### 2.1 通过异步处理提高系统性能(减少响应所需时间) + +  -如上图,**在不使用消息队列服务器的时候,用户的请求数据直接写入数据库,在高并发的情况下数据库压力剧增,使得响应速度变慢。但是在使用消息队列之后,用户的请求数据发送给消息队列之后立即返回,再由消息队列的消费者进程从消息队列中获取数据,异步写入数据库。由于消息队列服务器处理速度快于数据库(消息队列也比数据库有更好的伸缩性),因此响应速度得到大幅改善。** -通过以上分析我们可以得出**消息队列具有很好的削峰作用的功能**——即**通过异步处理,将短时间高并发产生的事务消息存储在消息队列中,从而削平高峰期的并发事务。** 举例:在电子商务一些秒杀、促销活动中,合理使用消息队列可以有效抵御促销活动刚开始大量订单涌入对系统的冲击。如下图所示: - + +将用户的请求数据存储到消息队列之后就立即返回结果。随后,系统再对消息进行消费。 因为**用户请求数据写入消息队列之后就立即返回给用户了,但是请求数据在后续的业务校验、写数据库等操作中可能失败**。因此使用消息队列进行异步处理之后,需要**适当修改业务流程进行配合**,比如**用户在提交订单之后,订单数据写入消息队列,不能立即返回用户订单提交成功,需要在消息队列的订单消费者进程真正处理完该订单之后,甚至出库后,再通过电子邮件或短信通知用户订单成功**,以免交易纠纷。这就类似我们平时手机订火车票和电影票。 -### (2) 降低系统耦合性 +### 2.2 削峰/限流 + +**先将短时间高并发产生的事务消息存储在消息队列中,然后后端服务再慢慢根据自己的能力去消费这些消息,这样就避免直接把后端服务打垮掉。** + +举例:在电子商务一些秒杀、促销活动中,合理使用消息队列可以有效抵御促销活动刚开始大量订单涌入对系统的冲击。如下图所示: + + + +### 2.3 降低系统耦合性 使用消息队列还可以降低系统耦合性。我们知道如果模块之间不存在直接调用,那么新增模块或者修改模块就对其他模块影响较小,这样系统的可扩展性无疑更好一些。还是直接上图吧: diff --git a/docs/system-design/high-availability/limit-request.md b/docs/system-design/high-availability/limit-request.md index 3d42c29a..e7e64acc 100644 --- a/docs/system-design/high-availability/limit-request.md +++ b/docs/system-design/high-availability/limit-request.md @@ -6,7 +6,7 @@ #### 固定窗口计数器算法 -规定我们单位时间处理的请求数量。比如我们规定我们的一个接口一分钟只能访问10次的话。使用固定窗口计数器算法的话可以这样实现:给定一个变量counter来记录处理的请求数量,当1分钟之内处理一个请求之后counter+1,1分钟之内的如果counter=100的话,后续的请求就会被全部拒绝。等到 1分钟结束后,将counter回归成0,重新开始计数(ps:只要过了一个周期就讲counter回归成0)。 +该算法规定我们单位时间处理的请求数量。比如我们规定我们的一个接口一分钟只能访问10次的话。使用固定窗口计数器算法的话可以这样实现:给定一个变量counter来记录处理的请求数量,当1分钟之内处理一个请求之后counter+1,1分钟之内的如果counter=100的话,后续的请求就会被全部拒绝。等到 1分钟结束后,将counter回归成0,重新开始计数(ps:只要过了一个周期就讲counter回归成0)。 这种限流算法无法保证限流速率,因而无法保证突然激增的流量。比如我们限制一个接口一分钟只能访问10次的话,前半分钟一个请求没有接收,后半分钟接收了10个请求。 @@ -14,7 +14,7 @@ #### 滑动窗口计数器算法 -算的上是固定窗口计数器算法的升级版。滑动窗口计数器算法相比于固定窗口计数器算法的优化在于:它把时间以一定比例分片。例如我们的借口限流每分钟处理60个请求,我们可以把 1 分钟分为60个窗口。每隔1秒移动一次,每个窗口一秒只能处理 不大于 60(请求数)/60(窗口数) 的请求, 如果当前窗口的请求计数总和超过了限制的数量的话就不再处理其他请求。 +该算法算的上是固定窗口计数器算法的升级版。滑动窗口计数器算法相比于固定窗口计数器算法的优化在于:它把时间以一定比例分片。例如我们的接口限流每分钟处理60个请求,我们可以把 1 分钟分为60个窗口。每隔1秒移动一次,每个窗口一秒只能处理 不大于 60(请求数)/60(窗口数) 的请求, 如果当前窗口的请求计数总和超过了限制的数量的话就不再处理其他请求。 很显然:当滑动窗口的格子划分的越多,滑动窗口的滚动就越平滑,限流的统计就会越精确。 @@ -32,4 +32,4 @@  -### \ No newline at end of file +###