From 5bda607f044174144fa9eec61c80a2bd4bbff3c8 Mon Sep 17 00:00:00 2001 From: Snailclimb Date: Sat, 30 Nov 2019 15:15:04 +0800 Subject: [PATCH] =?UTF-8?q?=E5=B8=83=E9=9A=86=E8=BF=87=E6=BB=A4=E5=99=A8?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../data-structure/bloom-filter.md | 51 +++++++++++++++++++ 1 file changed, 51 insertions(+) create mode 100644 docs/dataStructures-algorithms/data-structure/bloom-filter.md diff --git a/docs/dataStructures-algorithms/data-structure/bloom-filter.md b/docs/dataStructures-algorithms/data-structure/bloom-filter.md new file mode 100644 index 00000000..00535259 --- /dev/null +++ b/docs/dataStructures-algorithms/data-structure/bloom-filter.md @@ -0,0 +1,51 @@ +最近,当我在做一个项目的时候需要过滤掉重复的 URL ,为了完成这个任务,我学到了一种称为 Bloom Filter (布隆过滤器)的东西,然后我学会了它并写下了这个博客。 + +下面我们将分为几个方面来介绍布隆过滤器: + +1. 什么是布隆过滤器? +2. 布隆过滤器的原理介绍。 +3. 布隆过滤器使用场景。 +4. 通过 Java 编程手动实现布隆过滤器。 +5. 利用Google开源的guava中自带的布隆过滤器。 +6. 总结。 + +### 1.什么是布隆过滤器? + +首先,我们需要了解布隆过滤器的概念。 + +布隆过滤器(Bloom Filter)是一个叫做 Bloom 的老哥于1970年提出的。我们可以把它看作由二进制向量(或者说位数组)和一系列随机映射函数(哈希函数)两部分组成的数据结构。相比于我们平时常用的的 List、Map 、Set 等数据结构,它占用空间更少并且效率更高,但是缺点是其返回的结果是概率性的,而不是非常准确的。并且理论情况下添加到集合中的元素越多,误报的可能性就越大。 + +![布隆过滤器示意图](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/布隆过滤器-bit数组.png) + +位数组中的每个元素都只占用 1 bit ,并且每个元素只能是 0 或者 1。这样申请一个 100w 个元素的位数组只占用 1000000 / 8 = 125000 B = 15625 byte ≈ 15.3kb 的空间。 + +总结:**一个名叫 Bloom 的人提出了一种来检索元素是否在给定大集合中的数据结构,这种数据结构是高效且性能很好的,但缺点是具有一定的错误识别率和删除难度。并且,理论情况下,添加到集合中的元素越多,误报的可能性就越大。** + +### 2.布隆过滤器的原理介绍。 + +**当一个元素加入布隆过滤器中的时候,会进行如下操作:** + +1. 使用布隆过滤器中的哈希函数对元素值进行计算,得到哈希值(有几个哈希函数得到几个哈希值)。 +2. 根据得到的哈希值,在位数组中把对应下标的值置为 1。 + +**当我们需要判断一个元素是否存在于布隆过滤器的时候,会进行如下操作:** + +1. 对给定元素再次进行相同的哈希计算; +2. 得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。 + +举个简单的例子: + + + +![布隆过滤器hash计算](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/布隆过滤器-hash运算.png) + +如图所示,当字符串存储要加入到布隆过滤器中时,该字符串首先由多个哈希函数生成不同的哈希值,然后在对应的位数组的下表的元素设置为 1(当位数组初始化时 ,所有位置均为0)。当第二次存储相同字符串时,因为先前的对应位置已设置为1,所以很容易知道此值已经存在(去重非常方便)。 + +如果我们需要判断某个字符串是否在布隆过滤器中时,只需要对给定字符串再次进行相同的哈希计算,得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。 + +存在的问题是:**不同的字符串可能哈希出来的位置相同,这种情况我们可以适当增加位数组大小或者调整我们的哈希函数。** + +### 3.布隆过滤器使用场景 + +1. 判断给定数据是否存在:比如判断 防止缓存穿透 +2. 去重:比如爬给定网址的时候对已经爬取过的 URL 去重。 \ No newline at end of file