Compare commits

...

35 Commits
v0.1 ... main

Author SHA1 Message Date
duoduo
50473cd155 update ncnn example 2022-07-14 22:12:40 +08:00
duoduo
4d788ddd7c update ncnn example 2022-07-14 22:03:55 +08:00
xuehao.ma
ecf75ea74a
Update README.md 2022-07-14 21:25:48 +08:00
xuehao.ma
bca6b86858
Update README.md 2022-07-14 21:21:02 +08:00
xuehao.ma
99af3e5744
Update README.md 2022-07-14 21:20:27 +08:00
xuehao.ma
80e55e9869
Update README.md 2022-07-14 21:15:57 +08:00
xuehao.ma
20c209a5ba
Update README.md 2022-07-14 21:14:22 +08:00
xuehao.ma
b2b52e5a32
Update README.md 2022-07-14 21:13:51 +08:00
duoduo
bb2a17f359 Merge branch 'main' of github.com:dog-qiuqiu/FastestDet into main 2022-07-14 21:11:39 +08:00
duoduo
97df0a850c optim loss 2022-07-14 21:11:22 +08:00
xuehao.ma
88cc35126f
Update README.md 2022-07-12 18:35:53 +08:00
jinyanhua
b1d7230a61 update ncnn example 2022-07-08 17:09:01 +08:00
duoduo
6d08de2a42 add onnx-sim handle 2022-07-07 23:27:10 +08:00
xuehao.ma
1a28f35322
Merge pull request #6 from nihui/patch-1
Export torchscript
2022-07-07 22:38:34 +08:00
xuehao.ma
8c1d8e0f7e
Merge pull request #7 from nihui/fix-typo
Fix typo for handle_preds
2022-07-07 22:37:23 +08:00
nihui
d9f65e3755
Update evaluation.py 2022-07-07 21:01:05 +08:00
nihui
559a0e95b9
Update tool.py 2022-07-07 21:00:42 +08:00
nihui
8d49c6a969
Update test.py 2022-07-07 21:00:24 +08:00
nihui
89e38dc645
Update README.md 2022-07-07 19:23:03 +08:00
nihui
f7f9ab4b96
Update test.py 2022-07-07 19:21:58 +08:00
xuehao.ma
b1c5ef77a3
Update README.md 2022-07-07 19:12:24 +08:00
duoduo
a2883e2bb7 update 2022-07-07 15:54:48 +08:00
xuehao.ma
48911cceae
Update README.md 2022-07-06 21:44:20 +08:00
xuehao.ma
77ffa68230
Update README.md 2022-07-06 21:37:08 +08:00
xuehao.ma
8593800472
Update README.md 2022-07-05 20:04:39 +08:00
xuehao.ma
424b23c923
Update README.md 2022-07-05 20:03:50 +08:00
duoduo
07a97a5571 update benchmark 2022-07-05 19:55:15 +08:00
duoduo
fdf9e05803 fix bug 2022-07-05 19:44:14 +08:00
xuehao.ma
b1dfad4a21
Update README.md 2022-07-05 10:19:14 +08:00
xuehao.ma
22907c6149
Update README.md 2022-07-04 18:24:48 +08:00
duoduo
408fe95a03 update 2022-07-03 23:17:09 +08:00
duoduo
599c80fa9f update 2022-07-03 22:21:36 +08:00
duoduo
9022a9dc25 add onnx-runtime example 2022-07-03 22:06:36 +08:00
xuehao.ma
09bd31e625
Update README.md 2022-07-03 11:59:39 +08:00
xuehao.ma
3cf39c89ba
Update README.md 2022-07-02 09:55:03 +08:00
287 changed files with 751 additions and 1135 deletions

145
README.md
View File

@ -1,23 +1,38 @@
***2022.7.14:Optimize loss, adopt IOU aware based on smooth L1, and the AP is significantly increased by 0.7***
# :zap:FastestDet:zap:
[![DOI](https://zenodo.org/badge/508635170.svg)](https://zenodo.org/badge/latestdoi/508635170)
![image](https://img.shields.io/github/license/dog-qiuqiu/FastestDet)
![image](https://img.shields.io/github/stars/dog-qiuqiu/FastestDet?style=flat)
![image](https://github.com/dog-qiuqiu/FastestDet/blob/main/data/data.png)
* ***Faster! Stronger! Simpler!***
* ***It has better single core reasoning performance and simpler feature map post-processing than Yolo-fastest***
* ***In the ARM CPU of RK3568, the single core reasoning performance is 50% higher than Yolo-fastest***
* ***The coco evaluation index increased by 3.8% compared with the map0.5 of Yolo-fastest***
* ***It has better performance and simpler feature map post-processing than Yolo-fastest***
* ***The performance is 10% higher than Yolo-fastest***
* ***The coco evaluation index increased by 1.2% compared with the map0.5 of Yolo-fastestv2***
* ***算法介绍https://zhuanlan.zhihu.com/p/536500269 交流qq群:1062122604***
# Evaluating indicator/Benchmark
Network|COCO mAP(0.5)|Resolution|Run Time(4xCore)|Run Time(1xCore)|FLOPs(G)|Params(M)
Network|mAPval 0.5|mAPval 0.5:0.95|Resolution|Run Time(4xCore)|Run Time(1xCore)|Params(M)
:---:|:---:|:---:|:---:|:---:|:---:|:---:
[Yolo-FastestV1.1](https://github.com/dog-qiuqiu/Yolo-Fastest/tree/master/ModelZoo/yolo-fastest-1.1_coco)|24.40 %|320X320|26.60 ms|75.74 ms|0.252|0.35M
[Yolo-FastestV2](https://github.com/dog-qiuqiu/Yolo-FastestV2/tree/main/modelzoo)|24.10 %|352X352|23.8 ms|68.9 ms|0.212|0.25M
FastestDet|27.8%|512X512|21.51ms|34.62ms|*|0.25M
* ***Test platform RK3568 CPUBased on [NCNN](https://github.com/Tencent/ncnn)***
[yolov5s](https://github.com/ultralytics/yolov5)|56.8%|37.4%|640X640|395.31ms|1139.16ms|7.2M
[yolov6n](https://github.com/meituan/YOLOv6)|-|30.8%|416X416|109.24ms|445.44ms|4.3M
[yolox-nano](https://github.com/Megvii-BaseDetection/YOLOX)|-|25.8%|416X416|76.31ms|191.16ms|0.91M
[nanodet_m](https://github.com/RangiLyu/nanodet)|-|20.6%|320X320|49.24ms|160.35ms|0.95M
[yolo-fastestv1.1](https://github.com/dog-qiuqiu/Yolo-Fastest/tree/master/ModelZoo/yolo-fastest-1.1_coco)|24.40%|-|320X320|26.60ms|75.74ms|0.35M
[yolo-fastestv2](https://github.com/dog-qiuqiu/Yolo-FastestV2/tree/main/modelzoo)|24.10%|-|352X352|23.8ms|68.9ms|0.25M
FastestDet|25.3%|13.0%|352X352|23.51ms|70.62ms|0.24M
* ***Test platform Radxa Rock3A RK3568 ARM Cortex-A55 CPUBased on [NCNN](https://github.com/Tencent/ncnn)***
* ***CPU lock frequency 2.0GHz***
# Improvement
* Anchor-Free
* Single scale detector head
* Cross grid multiple candidate targets
* Dynamic positive and negative sample allocation
# Multi-platform benchmark
Equipment|Computing backend|System|Framework|Run time(Single core)|Run time(Multi core)
:---:|:---:|:---:|:---:|:---:|:---:
Radxa rock3a|RK3568(arm-cpu)|Linux(aarch64)|ncnn|70.62ms|23.51ms
Radxa rock3a|RK3568(NPU)|Linux(aarch64)|rknn|28ms|-
Qualcomm|Snapdragon 835(arm-cpu)|Android(aarch64)|ncnn|32.34ms|16.24ms
Intel|i7-8700(X86-cpu)|Linux(amd64)|ncnn|4.51ms|4.33ms
# How to use
## Dependent installation
* PiP(Note pytorch CUDA version selection)
@ -27,7 +42,7 @@ FastestDet|27.8%|512X512|21.51ms|34.62ms|*|0.25M
## Test
* Picture test
```
python3 test.py --yaml configs/config.yaml --weight weights/weight_AP05\:0.278_280-epoch.pth --img data/3.jpg
python3 test.py --yaml configs/coco.yaml --weight weights/weight_AP05:0.253207_280-epoch.pth --img data/3.jpg
```
<div align=center>
<img src="https://github.com/dog-qiuqiu/FastestDet/blob/main/result.png"> />
@ -106,36 +121,36 @@ FastestDet|27.8%|512X512|21.51ms|34.62ms|*|0.25M
```
### Build the training .yaml configuration file
* Reference./configs/config.yaml
```
DATASET:
TRAIN: "/home/qiuqiu/Desktop/coco2017/train2017.txt" # Train dataset path .txt file
VAL: "/home/qiuqiu/Desktop/coco2017/val2017.txt" # Val dataset path .txt file
NAMES: "dataset/coco128/coco.names" # .names category label file
MODEL:
NC: 80 # Number of detection categories
INPUT_WIDTH: 512 # The width of the model input image
INPUT_HEIGHT: 512 # The height of the model input image
TRAIN:
LR: 0.001 # Train learn rate
THRESH: 0.25 #
WARMUP: true # Trun on warm up
BATCH_SIZE: 64 # Batch size
END_EPOCH: 350 # Train epichs
MILESTIONES: # Declining learning rate steps
- 150
- 250
- 300
```
* Reference./configs/coco.yaml
```
DATASET:
TRAIN: "/home/qiuqiu/Desktop/coco2017/train2017.txt" # Train dataset path .txt file
VAL: "/home/qiuqiu/Desktop/coco2017/val2017.txt" # Val dataset path .txt file
NAMES: "dataset/coco128/coco.names" # .names category label file
MODEL:
NC: 80 # Number of detection categories
INPUT_WIDTH: 352 # The width of the model input image
INPUT_HEIGHT: 352 # The height of the model input image
TRAIN:
LR: 0.001 # Train learn rate
THRESH: 0.25 #
WARMUP: true # Trun on warm up
BATCH_SIZE: 64 # Batch size
END_EPOCH: 350 # Train epichs
MILESTIONES: # Declining learning rate steps
- 150
- 250
- 300
```
### Train
* Perform training tasks
```
python3 train.py --yaml configs/config.yaml
python3 train.py --yaml configs/coco.yaml
```
### Evaluation
* Calculate map evaluation
```
python3 eval.py --yaml configs/config.yaml --weight weights/weight_AP05\:0.278_280-epoch.pth
python3 eval.py --yaml configs/coco.yaml --weight weights/weight_AP05:0.253207_280-epoch.pth
```
* COCO2017 evaluation
```
@ -148,32 +163,54 @@ TRAIN:
DONE (t=30.85s).
Accumulating evaluation results...
DONE (t=4.97s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.140
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.278
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.128
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.018
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.232
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.157
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.225
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.231
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.032
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.201
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.359
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.130
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.253
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.119
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.129
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.237
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.142
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.208
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.214
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.043
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.236
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.372
```
# Deploy
## Export onnx
* You can export .onnx by adding the --onnx option when executing test.py
```
python3 test.py --yaml configs/coco.yaml --weight weights/weight_AP05:0.253207_280-epoch.pth --img data/3.jpg --onnx
```
## Export torchscript
* You can export .pt by adding the --torchscript option when executing test.py
```
python3 test.py --yaml configs/coco.yaml --weight weights/weight_AP05:0.253207_280-epoch.pth --img data/3.jpg --torchscript
```
## NCNN
* Waiting for update
* Need to compile ncnn and opencv in advance and modify the path in build.sh
```
cd example/ncnn/
sh build.sh
./FastestDet
```
## onnx-runtime
* You can learn about the pre and post-processing methods of FastestDet in this Sample
```
cd example/onnx-runtime
pip install onnx-runtime
python3 runtime.py
```
# Citation
* If you find this project useful in your research, please consider cite:
```
@misc{=FastestDet,
title={FastestDet: Ultra lightweight anchor-free real-time object detection algorithm.},
author={xuehao.ma},
howpublished = {\url{https://github.com/dog-qiuqiu/FastestDet}},
year={2022}
}
```
```
@misc{=FastestDet,
title={FastestDet: Ultra lightweight anchor-free real-time object detection algorithm.},
author={xuehao.ma},
howpublished = {\url{https://github.com/dog-qiuqiu/FastestDet}},
year={2022}
}
```
# Reference
* https://github.com/Tencent/ncnn

View File

@ -1,18 +1,18 @@
DATASET:
TRAIN: "/home/qiuqiu/Desktop/coco2017/train2017.txt"
VAL: "/home/qiuqiu/Desktop/coco2017/val2017.txt"
NAMES: "dataset/coco128/coco.names"
NAMES: "configs/coco.names"
MODEL:
NC: 80
INPUT_WIDTH: 512
INPUT_HEIGHT: 512
INPUT_WIDTH: 352
INPUT_HEIGHT: 352
TRAIN:
LR: 0.001
THRESH: 0.25
WARMUP: true
BATCH_SIZE: 64
END_EPOCH: 350
BATCH_SIZE: 96
END_EPOCH: 300
MILESTIONES:
- 150
- 250
- 300
- 100
- 200
- 250

Binary file not shown.

Before

Width:  |  Height:  |  Size: 630 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 585 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 577 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 290 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 525 KiB

Binary file not shown.

View File

@ -1,128 +0,0 @@
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000595.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000572.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000368.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000428.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000491.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000294.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000605.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000247.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000061.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000599.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000196.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000560.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000149.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000562.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000419.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000620.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000241.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000192.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000438.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000307.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000471.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000540.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000142.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000636.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000472.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000042.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000326.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000404.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000529.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000194.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000486.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000389.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000078.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000036.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000446.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000443.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000081.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000629.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000575.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000094.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000034.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000382.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000431.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000357.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000154.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000359.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000092.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000064.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000508.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000397.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000074.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000502.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000590.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000113.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000349.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000584.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000415.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000544.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000257.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000138.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000308.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000077.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000626.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000623.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000073.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000151.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000260.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000049.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000144.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000542.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000072.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000030.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000564.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000569.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000370.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000201.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000086.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000450.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000436.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000650.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000164.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000589.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000488.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000394.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000025.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000387.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000009.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000536.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000474.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000641.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000400.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000360.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000283.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000309.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000315.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000514.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000338.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000510.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000110.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000127.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000322.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000136.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000328.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000332.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000531.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000071.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000133.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000395.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000384.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000263.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000612.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000208.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000312.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000165.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000520.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000250.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000490.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000597.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000459.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000634.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000109.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000089.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000321.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000625.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000643.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000581.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000143.jpg
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000532.jpg

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

View File

@ -1,8 +0,0 @@
45 0.479492 0.688771 0.955609 0.5955
45 0.736516 0.247188 0.498875 0.476417
50 0.637063 0.732938 0.494125 0.510583
45 0.339438 0.418896 0.678875 0.7815
49 0.646836 0.132552 0.118047 0.096937
49 0.773148 0.129802 0.090734 0.097229
49 0.668297 0.226906 0.131281 0.146896
49 0.642859 0.079219 0.148063 0.148062

Binary file not shown.

Before

Width:  |  Height:  |  Size: 88 KiB

View File

@ -1,2 +0,0 @@
23 0.770336 0.489695 0.335891 0.697559
23 0.185977 0.901608 0.206297 0.129554

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

View File

@ -1,2 +0,0 @@
58 0.519219 0.451121 0.39825 0.75729
75 0.501188 0.592138 0.26 0.456192

Binary file not shown.

Before

Width:  |  Height:  |  Size: 103 KiB

View File

@ -1 +0,0 @@
22 0.346211 0.493259 0.689422 0.892118

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB

View File

@ -1,2 +0,0 @@
25 0.475759 0.414523 0.951518 0.672422
0 0.671279 0.617945 0.645759 0.726859

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

View File

@ -1 +0,0 @@
16 0.606687 0.341381 0.544156 0.51

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

View File

@ -1,9 +0,0 @@
17 0.597835 0.63755 0.342283 0.36886
17 0.324291 0.64808 0.219711 0.3164
0 0.620039 0.5939 0.172415 0.14608
0 0.385525 0.58557 0.14937 0.12586
0 0.328898 0.70199 0.031339 0.06714
58 0.622546 0.89961 0.185932 0.09446
0 0.760577 0.69423 0.028556 0.05486
0 0.510709 0.69215 0.018793 0.04682
0 0.929554 0.67602 0.038845 0.01844

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

View File

@ -1,5 +0,0 @@
0 0.445688 0.480615 0.075125 0.117295
0 0.640086 0.471742 0.050828 0.081434
20 0.643211 0.558852 0.129828 0.097623
20 0.459703 0.592121 0.22175 0.159242
0 0.435383 0.45832 0.053453 0.111025

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

View File

@ -1,4 +0,0 @@
2 0.292792 0.729031 0.367417 0.246281
7 0.239438 0.599242 0.259542 0.092922
11 0.279896 0.412773 0.077125 0.117453
74 0.394146 0.184914 0.321458 0.237984

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

View File

@ -1,16 +0,0 @@
2 0.752648 0.525833 0.043359 0.033216
2 0.835727 0.538498 0.038047 0.028169
2 0.700875 0.521455 0.036437 0.020235
2 0.937398 0.559777 0.042422 0.033592
6 0.452477 0.576408 0.755359 0.280892
2 0.794984 0.538779 0.036812 0.02615
2 0.953469 0.514906 0.026125 0.012723
7 0.539727 0.464061 0.037328 0.023897
7 0.58518 0.471397 0.037984 0.016596
2 0.982555 0.572371 0.034891 0.030047
2 0.767367 0.531279 0.037391 0.029695
2 0.617961 0.476373 0.025016 0.01007
2 0.588344 0.471491 0.030781 0.018333
2 0.560102 0.471303 0.030234 0.011995
2 0.796047 0.521796 0.029969 0.014577
2 0.734094 0.523427 0.029375 0.02723

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

View File

@ -1,2 +0,0 @@
23 0.658478 0.592133 0.677002 0.779766
23 0.391581 0.556305 0.546862 0.887391

Binary file not shown.

Before

Width:  |  Height:  |  Size: 121 KiB

View File

@ -1,2 +0,0 @@
3 0.497327 0.511852 0.948637 0.952609
3 0.240637 0.217617 0.475398 0.424859

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

View File

@ -1,8 +0,0 @@
16 0.32825 0.769577 0.463156 0.242207
1 0.128828 0.375258 0.249063 0.733333
0 0.476187 0.289613 0.028781 0.138099
0 0.52143 0.258251 0.021172 0.060869
0 0.569492 0.285235 0.024547 0.122254
0 0.746734 0.295869 0.049469 0.098357
0 0.444961 0.298779 0.023953 0.110047
0 0.450773 0.271209 0.018266 0.056925

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

View File

@ -1,8 +0,0 @@
0 0.53553 0.308733 0.2069 0.317147
0 0.73609 0.272987 0.18926 0.259413
36 0.13364 0.88656 0.10108 0.06464
36 0.50059 0.413213 0.05466 0.07608
0 0.14666 0.667293 0.194 0.441093
0 0.59734 0.325733 0.0494 0.111253
36 0.73492 0.39656 0.04812 0.040107
0 0.55563 0.265173 0.04586 0.220053

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

View File

@ -1 +0,0 @@
74 0.762851 0.196119 0.349886 0.385474

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

View File

@ -1 +0,0 @@
4 0.516492 0.469388 0.912516 0.748282

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

View File

@ -1,3 +0,0 @@
0 0.423213 0.57982 0.252246 0.587453
3 0.541543 0.766937 0.574727 0.451
26 0.649219 0.546375 0.262891 0.172156

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

View File

@ -1,10 +0,0 @@
43 0.805492 0.357625 0.040359 0.275792
43 0.760125 0.376135 0.030812 0.221062
43 0.84693 0.35051 0.041359 0.287271
43 0.884539 0.354979 0.032609 0.289542
43 0.917523 0.34999 0.042141 0.297479
69 0.478883 0.703823 0.525328 0.563062
68 0.092344 0.241927 0.184688 0.301896
73 0.815477 0.727354 0.141328 0.06325
73 0.865914 0.795917 0.178203 0.070208
73 0.900883 0.891187 0.198234 0.104417

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

View File

@ -1,2 +0,0 @@
42 0.782797 0.638876 0.257312 0.722248
55 0.490266 0.344941 0.587719 0.685386

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB

View File

@ -1,2 +0,0 @@
2 0.590102 0.689578 0.066984 0.09007
7 0.911406 0.725422 0.129062 0.218993

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

View File

@ -1,8 +0,0 @@
16 0.861211 0.73232 0.035797 0.044207
0 0.817984 0.691791 0.033187 0.078678
0 0.929648 0.6725 0.028422 0.054856
0 0.859836 0.609724 0.007109 0.019495
13 0.615359 0.657127 0.053844 0.057091
13 0.732055 0.705204 0.062953 0.055745
0 0.121414 0.493966 0.009828 0.036731
0 0.951336 0.666106 0.014359 0.027163

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

View File

@ -1,24 +0,0 @@
56 0.293922 0.361479 0.155406 0.166667
56 0.44668 0.410333 0.130984 0.247292
42 0.609039 0.883219 0.296391 0.233563
43 0.44157 0.875375 0.026328 0.24925
53 0.477352 0.902354 0.527641 0.17175
60 0.29882 0.235885 0.225172 0.158021
0 0.662641 0.494385 0.674719 0.988771
0 0.198031 0.560677 0.392687 0.586521
0 0.487922 0.144948 0.200563 0.285396
0 0.360898 0.09825 0.106328 0.1965
0 0.28382 0.093937 0.126391 0.178792
0 0.101781 0.181698 0.203563 0.363396
0 0.229195 0.057813 0.048547 0.115625
0 0.662703 0.090156 0.05425 0.175229
41 0.302555 0.184302 0.030016 0.037979
56 0.035484 0.455885 0.070094 0.352854
56 0.664039 0.177365 0.035766 0.026646
60 0.956766 0.246594 0.086469 0.074271
0 0.422117 0.031396 0.022172 0.059708
0 0.586672 0.097323 0.124219 0.194646
60 0.502242 0.893083 0.994641 0.213833
41 0.269547 0.186688 0.029219 0.048708
41 0.343391 0.184292 0.031219 0.032792
41 0.369352 0.1825 0.025828 0.048708

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

View File

@ -1,18 +0,0 @@
56 0.409675 0.645094 0.376851 0.098875
56 0.112825 0.950797 0.17262 0.096781
0 0.19274 0.404625 0.364663 0.711062
41 0.230937 0.763773 0.124038 0.095516
41 0.860721 0.264437 0.052115 0.029313
43 0.666815 0.635563 0.113486 0.136
55 0.655144 0.779773 0.625769 0.233703
0 0.910325 0.413461 0.179351 0.512891
60 0.523293 0.806984 0.953413 0.386031
0 0.591178 0.371906 0.470192 0.6045
41 0.709892 0.169898 0.061322 0.041828
41 0.861106 0.123367 0.056346 0.034453
41 0.854519 0.172797 0.057933 0.039062
41 0.934447 0.169328 0.042404 0.036406
41 0.494615 0.236281 0.048221 0.033813
41 0.451791 0.233664 0.056659 0.038766
41 0.443882 0.187086 0.047139 0.040047
41 0.360457 0.233461 0.045096 0.034797

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

View File

@ -1,17 +0,0 @@
58 0.384211 0.176424 0.101078 0.146778
60 0.58357 0.652942 0.831141 0.694116
41 0.741516 0.589574 0.289375 0.259356
43 0.551609 0.760468 0.162844 0.330374
44 0.608008 0.659958 0.132672 0.171143
55 0.37832 0.694688 0.196797 0.293451
73 0.502742 0.49973 0.201672 0.192349
13 0.050273 0.394875 0.100547 0.170374
13 0.281094 0.19657 0.068719 0.034179
25 0.541289 0.108805 0.163828 0.217609
25 0.230813 0.064563 0.051125 0.115863
26 0.542062 0.426798 0.734312 0.339501
0 0.711789 0.055187 0.035547 0.074324
13 0.216469 0.257308 0.101562 0.102807
13 0.348836 0.344044 0.082422 0.075405
60 0.582313 0.222152 0.334781 0.048669
25 0.185305 0.049397 0.044516 0.092599

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

View File

@ -1,2 +0,0 @@
59 0.51093 0.442073 0.978141 0.872188
77 0.858305 0.073521 0.074922 0.059833

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

View File

@ -1,4 +0,0 @@
0 0.05522 0.65123 0.10708 0.689037
0 0.06892 0.582019 0.13784 0.835963
23 0.34974 0.648984 0.37148 0.675615
23 0.76148 0.572072 0.25608 0.439171

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

View File

@ -1,7 +0,0 @@
72 0.122172 0.393944 0.192281 0.429529
74 0.546672 0.093979 0.107031 0.119546
45 0.281648 0.338351 0.071234 0.034084
69 0.499961 0.617976 0.187109 0.624712
71 0.877086 0.401291 0.201766 0.093403
58 0.910391 0.130305 0.06875 0.1026
75 0.3675 0.13712 0.052562 0.082304

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

View File

@ -1,4 +0,0 @@
39 0.701552 0.337305 0.333479 0.396672
60 0.5 0.530422 1 0.353469
46 0.505229 0.73543 0.568 0.300453
48 0.534083 0.794016 0.757417 0.411969

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

View File

@ -1,8 +0,0 @@
14 0.820783 0.56129 0.218633 0.3527
14 0.293458 0.37634 0.159617 0.33484
14 0.525983 0.41653 0.166667 0.32554
14 0.486708 0.66271 0.16165 0.24138
14 0.267033 0.79969 0.1538 0.3225
14 0.139517 0.17415 0.159167 0.26742
14 0.2955 0.60918 0.1904 0.26864
14 0.859717 0.79617 0.157067 0.30918

Binary file not shown.

Before

Width:  |  Height:  |  Size: 115 KiB

View File

@ -1,3 +0,0 @@
23 0.650563 0.626781 0.573031 0.746438
23 0.536969 0.637385 0.469781 0.725229
23 0.38343 0.583146 0.615172 0.833708

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

View File

@ -1,22 +0,0 @@
0 0.613805 0.7741 0.015016 0.031145
0 0.535719 0.755491 0.01075 0.030561
0 0.525578 0.753984 0.009844 0.032593
0 0.639203 0.776121 0.022969 0.03028
33 0.692844 0.46715 0.028687 0.035047
33 0.446031 0.596834 0.015156 0.014883
33 0.689094 0.207897 0.016219 0.029206
33 0.475727 0.499147 0.035078 0.025023
0 0.879875 0.763516 0.011094 0.043248
0 0.845305 0.755491 0.007953 0.034393
2 0.442828 0.734521 0.015156 0.012453
2 0.494555 0.745853 0.016391 0.011051
2 0.467687 0.744346 0.013437 0.009673
2 0.415742 0.759311 0.030391 0.016846
33 0.130477 0.81125 0.065109 0.031285
33 0.630531 0.660187 0.058844 0.037196
0 0.434891 0.778084 0.012531 0.029953
0 0.85457 0.76118 0.006953 0.038061
0 0.919844 0.762196 0.007062 0.023084
0 0.394578 0.765829 0.008313 0.053808
0 0.37107 0.765047 0.012234 0.056729
0 0.349812 0.764147 0.011938 0.063575

Binary file not shown.

Before

Width:  |  Height:  |  Size: 105 KiB

View File

@ -1,3 +0,0 @@
0 0.937271 0.137734 0.063667 0.08325
6 0.719542 0.503594 0.560917 0.992812
11 0.482646 0.541977 0.079417 0.055297

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

View File

@ -1,3 +0,0 @@
22 0.436815 0.746555 0.817518 0.506891
22 0.415152 0.410258 0.640796 0.217453
22 0.676944 0.196086 0.232295 0.099578

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

View File

@ -1,40 +0,0 @@
39 0.615391 0.411156 0.012531 0.055979
39 0.590367 0.416885 0.010734 0.043604
39 0.58018 0.413521 0.011016 0.057375
39 0.60432 0.416 0.011266 0.0505
39 0.692109 0.61676 0.028625 0.065354
72 0.745406 0.500187 0.151125 0.287583
39 0.731344 0.62699 0.0155 0.076146
39 0.632141 0.354646 0.014688 0.035625
39 0.591961 0.298708 0.016391 0.031583
39 0.639766 0.292698 0.015281 0.032813
39 0.65693 0.290938 0.016641 0.035125
56 0.36675 0.926208 0.2365 0.147583
40 0.250586 0.425167 0.020047 0.058875
40 0.232906 0.435479 0.025156 0.076125
40 0.180586 0.443792 0.022359 0.069583
40 0.106906 0.447781 0.030719 0.078396
40 0.139813 0.448458 0.024125 0.0825
40 0.15907 0.447073 0.018484 0.076938
41 0.25 0.508854 0.041844 0.043333
41 0.197148 0.513687 0.036297 0.040667
41 0.291938 0.50151 0.031469 0.033604
41 0.322883 0.49299 0.031234 0.032313
45 0.834883 0.472427 0.087734 0.021937
68 0.631812 0.505479 0.08325 0.06325
69 0.465656 0.584354 0.073156 0.071292
40 0.127484 0.447563 0.016938 0.082667
40 0.198609 0.437896 0.024781 0.079
40 0.21668 0.438781 0.016797 0.073687
41 0.266141 0.504708 0.033937 0.04425
41 0.813328 0.301812 0.024063 0.044542
41 0.844102 0.305635 0.023734 0.028563
41 0.795687 0.314125 0.009781 0.017083
41 0.279133 0.44301 0.027734 0.039271
41 0.220984 0.507156 0.023938 0.042104
45 0.813344 0.445646 0.045594 0.00975
45 0.833727 0.461135 0.088891 0.008771
45 0.836367 0.454271 0.081297 0.010917
45 0.835375 0.449427 0.086906 0.012646
45 0.577438 0.366531 0.020875 0.018854
60 0.689609 0.972083 0.214281 0.031167

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

View File

@ -1,4 +0,0 @@
27 0.321953 0.526194 0.141688 0.405187
0 0.687836 0.600877 0.598703 0.798246
0 0.286062 0.515728 0.553312 0.941567
76 0.341414 0.502248 0.467797 0.533787

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

View File

@ -1,5 +0,0 @@
0 0.648875 0.757302 0.205625 0.458437
0 0.744398 0.713219 0.122516 0.516729
0 0.029992 0.785385 0.057078 0.428146
0 0.505914 0.619375 0.173984 0.491
34 0.04875 0.891417 0.05625 0.193708

Binary file not shown.

Before

Width:  |  Height:  |  Size: 51 KiB

View File

@ -1,2 +0,0 @@
43 0.868227 0.932448 0.158453 0.135104
53 0.500844 0.535958 0.998312 0.901125

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

View File

@ -1,42 +0,0 @@
44 0.554898 0.468469 0.329391 0.101354
51 0.718219 0.802031 0.035906 0.088563
51 0.630547 0.836625 0.038469 0.112125
51 0.696375 0.809823 0.010656 0.054229
51 0.688344 0.874729 0.087469 0.064042
44 0.891422 0.648594 0.115187 0.254896
44 0.885594 0.490448 0.153031 0.089771
44 0.416 0.134375 0.111625 0.0905
44 0.909359 0.608073 0.112 0.167937
44 0.820719 0.90601 0.189906 0.183646
45 0.531563 0.186646 0.200906 0.13075
45 0.775672 0.610417 0.226375 0.236917
45 0.901391 0.805719 0.197219 0.297354
45 0.499047 0.502073 0.264688 0.179646
45 0.693187 0.847594 0.251938 0.289937
45 0.62275 0.399625 0.207313 0.143833
45 0.652055 0.308385 0.236328 0.134521
45 0.365664 0.186219 0.138109 0.068896
45 0.637227 0.16401 0.145297 0.130979
50 0.325914 0.562802 0.028516 0.065812
50 0.467734 0.85 0.058875 0.060208
50 0.283016 0.592469 0.033656 0.060604
51 0.743414 0.869427 0.041203 0.066021
51 0.659156 0.903385 0.021313 0.066146
60 0.5 0.543688 1 0.912625
42 0.395453 0.918188 0.132469 0.137667
44 0.749438 0.282969 0.068875 0.060438
45 0.255195 0.225646 0.150203 0.081958
45 0.144422 0.291271 0.183094 0.125417
45 0.055742 0.380312 0.111484 0.153167
50 0.211406 0.736573 0.0625 0.053021
51 0.621133 0.892375 0.056922 0.0625
51 0.911609 0.801094 0.019031 0.031313
51 0.607164 0.838719 0.049016 0.056771
51 0.296297 0.792573 0.06525 0.087021
51 0.675023 0.80176 0.034984 0.046646
51 0.694406 0.941417 0.03225 0.022083
44 0.838328 0.280281 0.030687 0.019354
50 0.410172 0.699927 0.038156 0.042771
50 0.465234 0.639437 0.027375 0.069375
50 0.248742 0.561771 0.025672 0.029
45 0.134875 0.489365 0.26975 0.191688

Binary file not shown.

Before

Width:  |  Height:  |  Size: 51 KiB

View File

@ -1,8 +0,0 @@
31 0.642445 0.497757 0.241953 0.847196
31 0.558789 0.463306 0.228891 0.845631
31 0.490047 0.457991 0.148594 0.687944
31 0.446477 0.466554 0.134797 0.684556
31 0.39518 0.444825 0.129297 0.670257
0 0.971078 0.47597 0.0195 0.038715
0 0.924641 0.475257 0.018344 0.041869
31 0.493016 0.492839 0.147281 0.689743

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

View File

@ -1,4 +0,0 @@
71 0.500844 0.60899 0.998312 0.764062
71 0.23793 0.427583 0.475859 0.228667
79 0.396391 0.447198 0.299625 0.185188
79 0.213313 0.34026 0.247406 0.171438

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

View File

@ -1,14 +0,0 @@
39 0.106344 0.932656 0.062271 0.134688
57 0.825125 0.623328 0.348333 0.462531
57 0.149771 0.638133 0.298167 0.406922
0 0.48524 0.499461 0.417563 0.978391
0 0.217229 0.683711 0.428458 0.543828
0 0.727677 0.61193 0.223229 0.401797
41 0.268917 0.96507 0.105667 0.069859
41 0.045312 0.966008 0.090292 0.067984
65 0.289917 0.519969 0.091917 0.034625
26 0.784573 0.791211 0.136063 0.114797
0 0.047031 0.741297 0.094062 0.317781
0 0.91199 0.707867 0.176021 0.359547
58 0.303687 0.268297 0.228833 0.314375
58 0.331958 0.603742 0.103708 0.112922

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

View File

@ -1,8 +0,0 @@
2 0.153867 0.480637 0.133922 0.083868
2 0.830969 0.44546 0.054688 0.042948
2 0.771828 0.441403 0.048313 0.053561
4 0.502234 0.494375 0.995531 0.986486
2 0.856453 0.413667 0.012687 0.014552
2 0.839664 0.412288 0.011641 0.015566
4 0.828281 0.267818 0.343438 0.132288
2 0.799281 0.409741 0.024344 0.01816

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

View File

@ -1,33 +0,0 @@
9 0.157914 0.445062 0.036766 0.068292
9 0.098148 0.439604 0.039203 0.0495
24 0.314625 0.812406 0.07875 0.115604
7 0.549438 0.707177 0.320219 0.256188
7 0.896609 0.700875 0.204312 0.133083
0 0.273953 0.859979 0.11175 0.280042
0 0.392078 0.763167 0.044344 0.166083
0 0.348062 0.755698 0.034813 0.126021
0 0.42543 0.764771 0.025578 0.151833
0 0.475633 0.782583 0.051797 0.160417
0 0.90368 0.726896 0.023047 0.088
0 0.203523 0.716594 0.015828 0.077146
0 0.510633 0.774021 0.031516 0.155833
0 0.137188 0.730198 0.031719 0.100354
0 0.227945 0.718365 0.024297 0.080104
0 0.363711 0.754375 0.023766 0.144875
9 0.364094 0.629573 0.017656 0.023729
9 0.047539 0.638865 0.008891 0.014813
9 0.04975 0.5885 0.009094 0.0245
24 0.334562 0.730542 0.017656 0.040792
26 0.489055 0.764677 0.019547 0.028687
0 0.314289 0.730177 0.032234 0.082854
7 0.906219 0.837302 0.187563 0.325396
7 0.196648 0.689646 0.220672 0.124667
7 0.759375 0.682094 0.038719 0.029062
9 0.152258 0.386031 0.023484 0.030521
26 0.150109 0.730167 0.009187 0.026
0 0.850312 0.726604 0.022 0.082958
9 0.477383 0.558146 0.011078 0.029542
9 0.466867 0.557292 0.009984 0.025417
9 0.090375 0.62775 0.007625 0.008958
26 0.33518 0.741677 0.017516 0.060521
26 0.743234 0.714958 0.009594 0.009583

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

View File

@ -1,7 +0,0 @@
5 0.07066 0.518619 0.13228 0.474054
0 0.57375 0.674565 0.1035 0.509009
0 0.05825 0.468724 0.04734 0.083634
2 0.51001 0.549895 0.0663 0.047237
28 0.70801 0.78985 0.0869 0.185345
28 0.77623 0.774324 0.0567 0.209369
28 0.73022 0.677327 0.12156 0.12

Some files were not shown because too many files have changed in this diff Show More