Compare commits
35 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
50473cd155 | ||
|
4d788ddd7c | ||
|
ecf75ea74a | ||
|
bca6b86858 | ||
|
99af3e5744 | ||
|
80e55e9869 | ||
|
20c209a5ba | ||
|
b2b52e5a32 | ||
|
bb2a17f359 | ||
|
97df0a850c | ||
|
88cc35126f | ||
|
b1d7230a61 | ||
|
6d08de2a42 | ||
|
1a28f35322 | ||
|
8c1d8e0f7e | ||
|
d9f65e3755 | ||
|
559a0e95b9 | ||
|
8d49c6a969 | ||
|
89e38dc645 | ||
|
f7f9ab4b96 | ||
|
b1c5ef77a3 | ||
|
a2883e2bb7 | ||
|
48911cceae | ||
|
77ffa68230 | ||
|
8593800472 | ||
|
424b23c923 | ||
|
07a97a5571 | ||
|
fdf9e05803 | ||
|
b1dfad4a21 | ||
|
22907c6149 | ||
|
408fe95a03 | ||
|
599c80fa9f | ||
|
9022a9dc25 | ||
|
09bd31e625 | ||
|
3cf39c89ba |
145
README.md
@ -1,23 +1,38 @@
|
||||
***2022.7.14:Optimize loss, adopt IOU aware based on smooth L1, and the AP is significantly increased by 0.7***
|
||||
# :zap:FastestDet:zap:
|
||||
[](https://zenodo.org/badge/latestdoi/508635170)
|
||||

|
||||

|
||||

|
||||
* ***Faster! Stronger! Simpler!***
|
||||
* ***It has better single core reasoning performance and simpler feature map post-processing than Yolo-fastest***
|
||||
* ***In the ARM CPU of RK3568, the single core reasoning performance is 50% higher than Yolo-fastest***
|
||||
* ***The coco evaluation index increased by 3.8% compared with the map0.5 of Yolo-fastest***
|
||||
* ***It has better performance and simpler feature map post-processing than Yolo-fastest***
|
||||
* ***The performance is 10% higher than Yolo-fastest***
|
||||
* ***The coco evaluation index increased by 1.2% compared with the map0.5 of Yolo-fastestv2***
|
||||
* ***算法介绍:https://zhuanlan.zhihu.com/p/536500269 交流qq群:1062122604***
|
||||
# Evaluating indicator/Benchmark
|
||||
Network|COCO mAP(0.5)|Resolution|Run Time(4xCore)|Run Time(1xCore)|FLOPs(G)|Params(M)
|
||||
Network|mAPval 0.5|mAPval 0.5:0.95|Resolution|Run Time(4xCore)|Run Time(1xCore)|Params(M)
|
||||
:---:|:---:|:---:|:---:|:---:|:---:|:---:
|
||||
[Yolo-FastestV1.1](https://github.com/dog-qiuqiu/Yolo-Fastest/tree/master/ModelZoo/yolo-fastest-1.1_coco)|24.40 %|320X320|26.60 ms|75.74 ms|0.252|0.35M
|
||||
[Yolo-FastestV2](https://github.com/dog-qiuqiu/Yolo-FastestV2/tree/main/modelzoo)|24.10 %|352X352|23.8 ms|68.9 ms|0.212|0.25M
|
||||
FastestDet|27.8%|512X512|21.51ms|34.62ms|*|0.25M
|
||||
|
||||
* ***Test platform RK3568 CPU,Based on [NCNN](https://github.com/Tencent/ncnn)***
|
||||
[yolov5s](https://github.com/ultralytics/yolov5)|56.8%|37.4%|640X640|395.31ms|1139.16ms|7.2M
|
||||
[yolov6n](https://github.com/meituan/YOLOv6)|-|30.8%|416X416|109.24ms|445.44ms|4.3M
|
||||
[yolox-nano](https://github.com/Megvii-BaseDetection/YOLOX)|-|25.8%|416X416|76.31ms|191.16ms|0.91M
|
||||
[nanodet_m](https://github.com/RangiLyu/nanodet)|-|20.6%|320X320|49.24ms|160.35ms|0.95M
|
||||
[yolo-fastestv1.1](https://github.com/dog-qiuqiu/Yolo-Fastest/tree/master/ModelZoo/yolo-fastest-1.1_coco)|24.40%|-|320X320|26.60ms|75.74ms|0.35M
|
||||
[yolo-fastestv2](https://github.com/dog-qiuqiu/Yolo-FastestV2/tree/main/modelzoo)|24.10%|-|352X352|23.8ms|68.9ms|0.25M
|
||||
FastestDet|25.3%|13.0%|352X352|23.51ms|70.62ms|0.24M
|
||||
* ***Test platform Radxa Rock3A RK3568 ARM Cortex-A55 CPU,Based on [NCNN](https://github.com/Tencent/ncnn)***
|
||||
* ***CPU lock frequency 2.0GHz***
|
||||
# Improvement
|
||||
* Anchor-Free
|
||||
* Single scale detector head
|
||||
* Cross grid multiple candidate targets
|
||||
* Dynamic positive and negative sample allocation
|
||||
# Multi-platform benchmark
|
||||
Equipment|Computing backend|System|Framework|Run time(Single core)|Run time(Multi core)
|
||||
:---:|:---:|:---:|:---:|:---:|:---:
|
||||
Radxa rock3a|RK3568(arm-cpu)|Linux(aarch64)|ncnn|70.62ms|23.51ms
|
||||
Radxa rock3a|RK3568(NPU)|Linux(aarch64)|rknn|28ms|-
|
||||
Qualcomm|Snapdragon 835(arm-cpu)|Android(aarch64)|ncnn|32.34ms|16.24ms
|
||||
Intel|i7-8700(X86-cpu)|Linux(amd64)|ncnn|4.51ms|4.33ms
|
||||
# How to use
|
||||
## Dependent installation
|
||||
* PiP(Note pytorch CUDA version selection)
|
||||
@ -27,7 +42,7 @@ FastestDet|27.8%|512X512|21.51ms|34.62ms|*|0.25M
|
||||
## Test
|
||||
* Picture test
|
||||
```
|
||||
python3 test.py --yaml configs/config.yaml --weight weights/weight_AP05\:0.278_280-epoch.pth --img data/3.jpg
|
||||
python3 test.py --yaml configs/coco.yaml --weight weights/weight_AP05:0.253207_280-epoch.pth --img data/3.jpg
|
||||
```
|
||||
<div align=center>
|
||||
<img src="https://github.com/dog-qiuqiu/FastestDet/blob/main/result.png"> />
|
||||
@ -106,36 +121,36 @@ FastestDet|27.8%|512X512|21.51ms|34.62ms|*|0.25M
|
||||
|
||||
```
|
||||
### Build the training .yaml configuration file
|
||||
* Reference./configs/config.yaml
|
||||
```
|
||||
DATASET:
|
||||
TRAIN: "/home/qiuqiu/Desktop/coco2017/train2017.txt" # Train dataset path .txt file
|
||||
VAL: "/home/qiuqiu/Desktop/coco2017/val2017.txt" # Val dataset path .txt file
|
||||
NAMES: "dataset/coco128/coco.names" # .names category label file
|
||||
MODEL:
|
||||
NC: 80 # Number of detection categories
|
||||
INPUT_WIDTH: 512 # The width of the model input image
|
||||
INPUT_HEIGHT: 512 # The height of the model input image
|
||||
TRAIN:
|
||||
LR: 0.001 # Train learn rate
|
||||
THRESH: 0.25 # ????
|
||||
WARMUP: true # Trun on warm up
|
||||
BATCH_SIZE: 64 # Batch size
|
||||
END_EPOCH: 350 # Train epichs
|
||||
MILESTIONES: # Declining learning rate steps
|
||||
- 150
|
||||
- 250
|
||||
- 300
|
||||
```
|
||||
* Reference./configs/coco.yaml
|
||||
```
|
||||
DATASET:
|
||||
TRAIN: "/home/qiuqiu/Desktop/coco2017/train2017.txt" # Train dataset path .txt file
|
||||
VAL: "/home/qiuqiu/Desktop/coco2017/val2017.txt" # Val dataset path .txt file
|
||||
NAMES: "dataset/coco128/coco.names" # .names category label file
|
||||
MODEL:
|
||||
NC: 80 # Number of detection categories
|
||||
INPUT_WIDTH: 352 # The width of the model input image
|
||||
INPUT_HEIGHT: 352 # The height of the model input image
|
||||
TRAIN:
|
||||
LR: 0.001 # Train learn rate
|
||||
THRESH: 0.25 # ????
|
||||
WARMUP: true # Trun on warm up
|
||||
BATCH_SIZE: 64 # Batch size
|
||||
END_EPOCH: 350 # Train epichs
|
||||
MILESTIONES: # Declining learning rate steps
|
||||
- 150
|
||||
- 250
|
||||
- 300
|
||||
```
|
||||
### Train
|
||||
* Perform training tasks
|
||||
```
|
||||
python3 train.py --yaml configs/config.yaml
|
||||
python3 train.py --yaml configs/coco.yaml
|
||||
```
|
||||
### Evaluation
|
||||
* Calculate map evaluation
|
||||
```
|
||||
python3 eval.py --yaml configs/config.yaml --weight weights/weight_AP05\:0.278_280-epoch.pth
|
||||
python3 eval.py --yaml configs/coco.yaml --weight weights/weight_AP05:0.253207_280-epoch.pth
|
||||
```
|
||||
* COCO2017 evaluation
|
||||
```
|
||||
@ -148,32 +163,54 @@ TRAIN:
|
||||
DONE (t=30.85s).
|
||||
Accumulating evaluation results...
|
||||
DONE (t=4.97s).
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.140
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.278
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.128
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.018
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.232
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.157
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.225
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.231
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.032
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.201
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.359
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.130
|
||||
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.253
|
||||
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.119
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.129
|
||||
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.237
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.142
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.208
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.214
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.043
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.236
|
||||
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.372
|
||||
|
||||
```
|
||||
# Deploy
|
||||
## Export onnx
|
||||
* You can export .onnx by adding the --onnx option when executing test.py
|
||||
```
|
||||
python3 test.py --yaml configs/coco.yaml --weight weights/weight_AP05:0.253207_280-epoch.pth --img data/3.jpg --onnx
|
||||
```
|
||||
## Export torchscript
|
||||
* You can export .pt by adding the --torchscript option when executing test.py
|
||||
```
|
||||
python3 test.py --yaml configs/coco.yaml --weight weights/weight_AP05:0.253207_280-epoch.pth --img data/3.jpg --torchscript
|
||||
```
|
||||
## NCNN
|
||||
* Waiting for update
|
||||
* Need to compile ncnn and opencv in advance and modify the path in build.sh
|
||||
```
|
||||
cd example/ncnn/
|
||||
sh build.sh
|
||||
./FastestDet
|
||||
```
|
||||
## onnx-runtime
|
||||
* You can learn about the pre and post-processing methods of FastestDet in this Sample
|
||||
```
|
||||
cd example/onnx-runtime
|
||||
pip install onnx-runtime
|
||||
python3 runtime.py
|
||||
```
|
||||
# Citation
|
||||
* If you find this project useful in your research, please consider cite:
|
||||
```
|
||||
@misc{=FastestDet,
|
||||
title={FastestDet: Ultra lightweight anchor-free real-time object detection algorithm.},
|
||||
author={xuehao.ma},
|
||||
howpublished = {\url{https://github.com/dog-qiuqiu/FastestDet}},
|
||||
year={2022}
|
||||
}
|
||||
```
|
||||
```
|
||||
@misc{=FastestDet,
|
||||
title={FastestDet: Ultra lightweight anchor-free real-time object detection algorithm.},
|
||||
author={xuehao.ma},
|
||||
howpublished = {\url{https://github.com/dog-qiuqiu/FastestDet}},
|
||||
year={2022}
|
||||
}
|
||||
```
|
||||
# Reference
|
||||
* https://github.com/Tencent/ncnn
|
||||
|
@ -1,18 +1,18 @@
|
||||
DATASET:
|
||||
TRAIN: "/home/qiuqiu/Desktop/coco2017/train2017.txt"
|
||||
VAL: "/home/qiuqiu/Desktop/coco2017/val2017.txt"
|
||||
NAMES: "dataset/coco128/coco.names"
|
||||
NAMES: "configs/coco.names"
|
||||
MODEL:
|
||||
NC: 80
|
||||
INPUT_WIDTH: 512
|
||||
INPUT_HEIGHT: 512
|
||||
INPUT_WIDTH: 352
|
||||
INPUT_HEIGHT: 352
|
||||
TRAIN:
|
||||
LR: 0.001
|
||||
THRESH: 0.25
|
||||
WARMUP: true
|
||||
BATCH_SIZE: 64
|
||||
END_EPOCH: 350
|
||||
BATCH_SIZE: 96
|
||||
END_EPOCH: 300
|
||||
MILESTIONES:
|
||||
- 150
|
||||
- 250
|
||||
- 300
|
||||
- 100
|
||||
- 200
|
||||
- 250
|
Before Width: | Height: | Size: 630 KiB |
Before Width: | Height: | Size: 585 KiB |
Before Width: | Height: | Size: 577 KiB |
Before Width: | Height: | Size: 290 KiB |
Before Width: | Height: | Size: 525 KiB |
BIN
dataset/coco128/.DS_Store
vendored
@ -1,128 +0,0 @@
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000595.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000572.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000368.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000428.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000491.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000294.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000605.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000247.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000061.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000599.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000196.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000560.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000149.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000562.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000419.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000620.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000241.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000192.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000438.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000307.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000471.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000540.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000142.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000636.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000472.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000042.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000326.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000404.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000529.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000194.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000486.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000389.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000078.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000036.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000446.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000443.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000081.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000629.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000575.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000094.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000034.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000382.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000431.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000357.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000154.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000359.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000092.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000064.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000508.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000397.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000074.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000502.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000590.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000113.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000349.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000584.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000415.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000544.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000257.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000138.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000308.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000077.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000626.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000623.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000073.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000151.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000260.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000049.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000144.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000542.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000072.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000030.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000564.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000569.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000370.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000201.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000086.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000450.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000436.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000650.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000164.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000589.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000488.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000394.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000025.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000387.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000009.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000536.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000474.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000641.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000400.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000360.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000283.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000309.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000315.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000514.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000338.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000510.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000110.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000127.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000322.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000136.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000328.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000332.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000531.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000071.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000133.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000395.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000384.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000263.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000612.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000208.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000312.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000165.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000520.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000250.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000490.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000597.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000459.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000634.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000109.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000089.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000321.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000625.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000643.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000581.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000143.jpg
|
||||
/home/qiuqiu/Desktop/pytorch-detector/dataset/coco128/train/000000000532.jpg
|
Before Width: | Height: | Size: 61 KiB |
@ -1,8 +0,0 @@
|
||||
45 0.479492 0.688771 0.955609 0.5955
|
||||
45 0.736516 0.247188 0.498875 0.476417
|
||||
50 0.637063 0.732938 0.494125 0.510583
|
||||
45 0.339438 0.418896 0.678875 0.7815
|
||||
49 0.646836 0.132552 0.118047 0.096937
|
||||
49 0.773148 0.129802 0.090734 0.097229
|
||||
49 0.668297 0.226906 0.131281 0.146896
|
||||
49 0.642859 0.079219 0.148063 0.148062
|
Before Width: | Height: | Size: 88 KiB |
@ -1,2 +0,0 @@
|
||||
23 0.770336 0.489695 0.335891 0.697559
|
||||
23 0.185977 0.901608 0.206297 0.129554
|
Before Width: | Height: | Size: 29 KiB |
@ -1,2 +0,0 @@
|
||||
58 0.519219 0.451121 0.39825 0.75729
|
||||
75 0.501188 0.592138 0.26 0.456192
|
Before Width: | Height: | Size: 103 KiB |
@ -1 +0,0 @@
|
||||
22 0.346211 0.493259 0.689422 0.892118
|
Before Width: | Height: | Size: 65 KiB |
@ -1,2 +0,0 @@
|
||||
25 0.475759 0.414523 0.951518 0.672422
|
||||
0 0.671279 0.617945 0.645759 0.726859
|
Before Width: | Height: | Size: 55 KiB |
@ -1 +0,0 @@
|
||||
16 0.606687 0.341381 0.544156 0.51
|
Before Width: | Height: | Size: 40 KiB |
@ -1,9 +0,0 @@
|
||||
17 0.597835 0.63755 0.342283 0.36886
|
||||
17 0.324291 0.64808 0.219711 0.3164
|
||||
0 0.620039 0.5939 0.172415 0.14608
|
||||
0 0.385525 0.58557 0.14937 0.12586
|
||||
0 0.328898 0.70199 0.031339 0.06714
|
||||
58 0.622546 0.89961 0.185932 0.09446
|
||||
0 0.760577 0.69423 0.028556 0.05486
|
||||
0 0.510709 0.69215 0.018793 0.04682
|
||||
0 0.929554 0.67602 0.038845 0.01844
|
Before Width: | Height: | Size: 132 KiB |
@ -1,5 +0,0 @@
|
||||
0 0.445688 0.480615 0.075125 0.117295
|
||||
0 0.640086 0.471742 0.050828 0.081434
|
||||
20 0.643211 0.558852 0.129828 0.097623
|
||||
20 0.459703 0.592121 0.22175 0.159242
|
||||
0 0.435383 0.45832 0.053453 0.111025
|
Before Width: | Height: | Size: 58 KiB |
@ -1,4 +0,0 @@
|
||||
2 0.292792 0.729031 0.367417 0.246281
|
||||
7 0.239438 0.599242 0.259542 0.092922
|
||||
11 0.279896 0.412773 0.077125 0.117453
|
||||
74 0.394146 0.184914 0.321458 0.237984
|
Before Width: | Height: | Size: 56 KiB |
@ -1,16 +0,0 @@
|
||||
2 0.752648 0.525833 0.043359 0.033216
|
||||
2 0.835727 0.538498 0.038047 0.028169
|
||||
2 0.700875 0.521455 0.036437 0.020235
|
||||
2 0.937398 0.559777 0.042422 0.033592
|
||||
6 0.452477 0.576408 0.755359 0.280892
|
||||
2 0.794984 0.538779 0.036812 0.02615
|
||||
2 0.953469 0.514906 0.026125 0.012723
|
||||
7 0.539727 0.464061 0.037328 0.023897
|
||||
7 0.58518 0.471397 0.037984 0.016596
|
||||
2 0.982555 0.572371 0.034891 0.030047
|
||||
2 0.767367 0.531279 0.037391 0.029695
|
||||
2 0.617961 0.476373 0.025016 0.01007
|
||||
2 0.588344 0.471491 0.030781 0.018333
|
||||
2 0.560102 0.471303 0.030234 0.011995
|
||||
2 0.796047 0.521796 0.029969 0.014577
|
||||
2 0.734094 0.523427 0.029375 0.02723
|
Before Width: | Height: | Size: 81 KiB |
@ -1,2 +0,0 @@
|
||||
23 0.658478 0.592133 0.677002 0.779766
|
||||
23 0.391581 0.556305 0.546862 0.887391
|
Before Width: | Height: | Size: 121 KiB |
@ -1,2 +0,0 @@
|
||||
3 0.497327 0.511852 0.948637 0.952609
|
||||
3 0.240637 0.217617 0.475398 0.424859
|
Before Width: | Height: | Size: 46 KiB |
@ -1,8 +0,0 @@
|
||||
16 0.32825 0.769577 0.463156 0.242207
|
||||
1 0.128828 0.375258 0.249063 0.733333
|
||||
0 0.476187 0.289613 0.028781 0.138099
|
||||
0 0.52143 0.258251 0.021172 0.060869
|
||||
0 0.569492 0.285235 0.024547 0.122254
|
||||
0 0.746734 0.295869 0.049469 0.098357
|
||||
0 0.444961 0.298779 0.023953 0.110047
|
||||
0 0.450773 0.271209 0.018266 0.056925
|
Before Width: | Height: | Size: 49 KiB |
@ -1,8 +0,0 @@
|
||||
0 0.53553 0.308733 0.2069 0.317147
|
||||
0 0.73609 0.272987 0.18926 0.259413
|
||||
36 0.13364 0.88656 0.10108 0.06464
|
||||
36 0.50059 0.413213 0.05466 0.07608
|
||||
0 0.14666 0.667293 0.194 0.441093
|
||||
0 0.59734 0.325733 0.0494 0.111253
|
||||
36 0.73492 0.39656 0.04812 0.040107
|
||||
0 0.55563 0.265173 0.04586 0.220053
|
Before Width: | Height: | Size: 72 KiB |
@ -1 +0,0 @@
|
||||
74 0.762851 0.196119 0.349886 0.385474
|
Before Width: | Height: | Size: 23 KiB |
@ -1 +0,0 @@
|
||||
4 0.516492 0.469388 0.912516 0.748282
|
Before Width: | Height: | Size: 86 KiB |
@ -1,3 +0,0 @@
|
||||
0 0.423213 0.57982 0.252246 0.587453
|
||||
3 0.541543 0.766937 0.574727 0.451
|
||||
26 0.649219 0.546375 0.262891 0.172156
|
Before Width: | Height: | Size: 41 KiB |
@ -1,10 +0,0 @@
|
||||
43 0.805492 0.357625 0.040359 0.275792
|
||||
43 0.760125 0.376135 0.030812 0.221062
|
||||
43 0.84693 0.35051 0.041359 0.287271
|
||||
43 0.884539 0.354979 0.032609 0.289542
|
||||
43 0.917523 0.34999 0.042141 0.297479
|
||||
69 0.478883 0.703823 0.525328 0.563062
|
||||
68 0.092344 0.241927 0.184688 0.301896
|
||||
73 0.815477 0.727354 0.141328 0.06325
|
||||
73 0.865914 0.795917 0.178203 0.070208
|
||||
73 0.900883 0.891187 0.198234 0.104417
|
Before Width: | Height: | Size: 28 KiB |
@ -1,2 +0,0 @@
|
||||
42 0.782797 0.638876 0.257312 0.722248
|
||||
55 0.490266 0.344941 0.587719 0.685386
|
Before Width: | Height: | Size: 65 KiB |
@ -1,2 +0,0 @@
|
||||
2 0.590102 0.689578 0.066984 0.09007
|
||||
7 0.911406 0.725422 0.129062 0.218993
|
Before Width: | Height: | Size: 61 KiB |
@ -1,8 +0,0 @@
|
||||
16 0.861211 0.73232 0.035797 0.044207
|
||||
0 0.817984 0.691791 0.033187 0.078678
|
||||
0 0.929648 0.6725 0.028422 0.054856
|
||||
0 0.859836 0.609724 0.007109 0.019495
|
||||
13 0.615359 0.657127 0.053844 0.057091
|
||||
13 0.732055 0.705204 0.062953 0.055745
|
||||
0 0.121414 0.493966 0.009828 0.036731
|
||||
0 0.951336 0.666106 0.014359 0.027163
|
Before Width: | Height: | Size: 55 KiB |
@ -1,24 +0,0 @@
|
||||
56 0.293922 0.361479 0.155406 0.166667
|
||||
56 0.44668 0.410333 0.130984 0.247292
|
||||
42 0.609039 0.883219 0.296391 0.233563
|
||||
43 0.44157 0.875375 0.026328 0.24925
|
||||
53 0.477352 0.902354 0.527641 0.17175
|
||||
60 0.29882 0.235885 0.225172 0.158021
|
||||
0 0.662641 0.494385 0.674719 0.988771
|
||||
0 0.198031 0.560677 0.392687 0.586521
|
||||
0 0.487922 0.144948 0.200563 0.285396
|
||||
0 0.360898 0.09825 0.106328 0.1965
|
||||
0 0.28382 0.093937 0.126391 0.178792
|
||||
0 0.101781 0.181698 0.203563 0.363396
|
||||
0 0.229195 0.057813 0.048547 0.115625
|
||||
0 0.662703 0.090156 0.05425 0.175229
|
||||
41 0.302555 0.184302 0.030016 0.037979
|
||||
56 0.035484 0.455885 0.070094 0.352854
|
||||
56 0.664039 0.177365 0.035766 0.026646
|
||||
60 0.956766 0.246594 0.086469 0.074271
|
||||
0 0.422117 0.031396 0.022172 0.059708
|
||||
0 0.586672 0.097323 0.124219 0.194646
|
||||
60 0.502242 0.893083 0.994641 0.213833
|
||||
41 0.269547 0.186688 0.029219 0.048708
|
||||
41 0.343391 0.184292 0.031219 0.032792
|
||||
41 0.369352 0.1825 0.025828 0.048708
|
Before Width: | Height: | Size: 54 KiB |
@ -1,18 +0,0 @@
|
||||
56 0.409675 0.645094 0.376851 0.098875
|
||||
56 0.112825 0.950797 0.17262 0.096781
|
||||
0 0.19274 0.404625 0.364663 0.711062
|
||||
41 0.230937 0.763773 0.124038 0.095516
|
||||
41 0.860721 0.264437 0.052115 0.029313
|
||||
43 0.666815 0.635563 0.113486 0.136
|
||||
55 0.655144 0.779773 0.625769 0.233703
|
||||
0 0.910325 0.413461 0.179351 0.512891
|
||||
60 0.523293 0.806984 0.953413 0.386031
|
||||
0 0.591178 0.371906 0.470192 0.6045
|
||||
41 0.709892 0.169898 0.061322 0.041828
|
||||
41 0.861106 0.123367 0.056346 0.034453
|
||||
41 0.854519 0.172797 0.057933 0.039062
|
||||
41 0.934447 0.169328 0.042404 0.036406
|
||||
41 0.494615 0.236281 0.048221 0.033813
|
||||
41 0.451791 0.233664 0.056659 0.038766
|
||||
41 0.443882 0.187086 0.047139 0.040047
|
||||
41 0.360457 0.233461 0.045096 0.034797
|
Before Width: | Height: | Size: 63 KiB |
@ -1,17 +0,0 @@
|
||||
58 0.384211 0.176424 0.101078 0.146778
|
||||
60 0.58357 0.652942 0.831141 0.694116
|
||||
41 0.741516 0.589574 0.289375 0.259356
|
||||
43 0.551609 0.760468 0.162844 0.330374
|
||||
44 0.608008 0.659958 0.132672 0.171143
|
||||
55 0.37832 0.694688 0.196797 0.293451
|
||||
73 0.502742 0.49973 0.201672 0.192349
|
||||
13 0.050273 0.394875 0.100547 0.170374
|
||||
13 0.281094 0.19657 0.068719 0.034179
|
||||
25 0.541289 0.108805 0.163828 0.217609
|
||||
25 0.230813 0.064563 0.051125 0.115863
|
||||
26 0.542062 0.426798 0.734312 0.339501
|
||||
0 0.711789 0.055187 0.035547 0.074324
|
||||
13 0.216469 0.257308 0.101562 0.102807
|
||||
13 0.348836 0.344044 0.082422 0.075405
|
||||
60 0.582313 0.222152 0.334781 0.048669
|
||||
25 0.185305 0.049397 0.044516 0.092599
|
Before Width: | Height: | Size: 39 KiB |
@ -1,2 +0,0 @@
|
||||
59 0.51093 0.442073 0.978141 0.872188
|
||||
77 0.858305 0.073521 0.074922 0.059833
|
Before Width: | Height: | Size: 31 KiB |
@ -1,4 +0,0 @@
|
||||
0 0.05522 0.65123 0.10708 0.689037
|
||||
0 0.06892 0.582019 0.13784 0.835963
|
||||
23 0.34974 0.648984 0.37148 0.675615
|
||||
23 0.76148 0.572072 0.25608 0.439171
|
Before Width: | Height: | Size: 72 KiB |
@ -1,7 +0,0 @@
|
||||
72 0.122172 0.393944 0.192281 0.429529
|
||||
74 0.546672 0.093979 0.107031 0.119546
|
||||
45 0.281648 0.338351 0.071234 0.034084
|
||||
69 0.499961 0.617976 0.187109 0.624712
|
||||
71 0.877086 0.401291 0.201766 0.093403
|
||||
58 0.910391 0.130305 0.06875 0.1026
|
||||
75 0.3675 0.13712 0.052562 0.082304
|
Before Width: | Height: | Size: 42 KiB |
@ -1,4 +0,0 @@
|
||||
39 0.701552 0.337305 0.333479 0.396672
|
||||
60 0.5 0.530422 1 0.353469
|
||||
46 0.505229 0.73543 0.568 0.300453
|
||||
48 0.534083 0.794016 0.757417 0.411969
|
Before Width: | Height: | Size: 30 KiB |
@ -1,8 +0,0 @@
|
||||
14 0.820783 0.56129 0.218633 0.3527
|
||||
14 0.293458 0.37634 0.159617 0.33484
|
||||
14 0.525983 0.41653 0.166667 0.32554
|
||||
14 0.486708 0.66271 0.16165 0.24138
|
||||
14 0.267033 0.79969 0.1538 0.3225
|
||||
14 0.139517 0.17415 0.159167 0.26742
|
||||
14 0.2955 0.60918 0.1904 0.26864
|
||||
14 0.859717 0.79617 0.157067 0.30918
|
Before Width: | Height: | Size: 115 KiB |
@ -1,3 +0,0 @@
|
||||
23 0.650563 0.626781 0.573031 0.746438
|
||||
23 0.536969 0.637385 0.469781 0.725229
|
||||
23 0.38343 0.583146 0.615172 0.833708
|
Before Width: | Height: | Size: 28 KiB |
@ -1,22 +0,0 @@
|
||||
0 0.613805 0.7741 0.015016 0.031145
|
||||
0 0.535719 0.755491 0.01075 0.030561
|
||||
0 0.525578 0.753984 0.009844 0.032593
|
||||
0 0.639203 0.776121 0.022969 0.03028
|
||||
33 0.692844 0.46715 0.028687 0.035047
|
||||
33 0.446031 0.596834 0.015156 0.014883
|
||||
33 0.689094 0.207897 0.016219 0.029206
|
||||
33 0.475727 0.499147 0.035078 0.025023
|
||||
0 0.879875 0.763516 0.011094 0.043248
|
||||
0 0.845305 0.755491 0.007953 0.034393
|
||||
2 0.442828 0.734521 0.015156 0.012453
|
||||
2 0.494555 0.745853 0.016391 0.011051
|
||||
2 0.467687 0.744346 0.013437 0.009673
|
||||
2 0.415742 0.759311 0.030391 0.016846
|
||||
33 0.130477 0.81125 0.065109 0.031285
|
||||
33 0.630531 0.660187 0.058844 0.037196
|
||||
0 0.434891 0.778084 0.012531 0.029953
|
||||
0 0.85457 0.76118 0.006953 0.038061
|
||||
0 0.919844 0.762196 0.007062 0.023084
|
||||
0 0.394578 0.765829 0.008313 0.053808
|
||||
0 0.37107 0.765047 0.012234 0.056729
|
||||
0 0.349812 0.764147 0.011938 0.063575
|
Before Width: | Height: | Size: 105 KiB |
@ -1,3 +0,0 @@
|
||||
0 0.937271 0.137734 0.063667 0.08325
|
||||
6 0.719542 0.503594 0.560917 0.992812
|
||||
11 0.482646 0.541977 0.079417 0.055297
|
Before Width: | Height: | Size: 62 KiB |
@ -1,3 +0,0 @@
|
||||
22 0.436815 0.746555 0.817518 0.506891
|
||||
22 0.415152 0.410258 0.640796 0.217453
|
||||
22 0.676944 0.196086 0.232295 0.099578
|
Before Width: | Height: | Size: 40 KiB |
@ -1,40 +0,0 @@
|
||||
39 0.615391 0.411156 0.012531 0.055979
|
||||
39 0.590367 0.416885 0.010734 0.043604
|
||||
39 0.58018 0.413521 0.011016 0.057375
|
||||
39 0.60432 0.416 0.011266 0.0505
|
||||
39 0.692109 0.61676 0.028625 0.065354
|
||||
72 0.745406 0.500187 0.151125 0.287583
|
||||
39 0.731344 0.62699 0.0155 0.076146
|
||||
39 0.632141 0.354646 0.014688 0.035625
|
||||
39 0.591961 0.298708 0.016391 0.031583
|
||||
39 0.639766 0.292698 0.015281 0.032813
|
||||
39 0.65693 0.290938 0.016641 0.035125
|
||||
56 0.36675 0.926208 0.2365 0.147583
|
||||
40 0.250586 0.425167 0.020047 0.058875
|
||||
40 0.232906 0.435479 0.025156 0.076125
|
||||
40 0.180586 0.443792 0.022359 0.069583
|
||||
40 0.106906 0.447781 0.030719 0.078396
|
||||
40 0.139813 0.448458 0.024125 0.0825
|
||||
40 0.15907 0.447073 0.018484 0.076938
|
||||
41 0.25 0.508854 0.041844 0.043333
|
||||
41 0.197148 0.513687 0.036297 0.040667
|
||||
41 0.291938 0.50151 0.031469 0.033604
|
||||
41 0.322883 0.49299 0.031234 0.032313
|
||||
45 0.834883 0.472427 0.087734 0.021937
|
||||
68 0.631812 0.505479 0.08325 0.06325
|
||||
69 0.465656 0.584354 0.073156 0.071292
|
||||
40 0.127484 0.447563 0.016938 0.082667
|
||||
40 0.198609 0.437896 0.024781 0.079
|
||||
40 0.21668 0.438781 0.016797 0.073687
|
||||
41 0.266141 0.504708 0.033937 0.04425
|
||||
41 0.813328 0.301812 0.024063 0.044542
|
||||
41 0.844102 0.305635 0.023734 0.028563
|
||||
41 0.795687 0.314125 0.009781 0.017083
|
||||
41 0.279133 0.44301 0.027734 0.039271
|
||||
41 0.220984 0.507156 0.023938 0.042104
|
||||
45 0.813344 0.445646 0.045594 0.00975
|
||||
45 0.833727 0.461135 0.088891 0.008771
|
||||
45 0.836367 0.454271 0.081297 0.010917
|
||||
45 0.835375 0.449427 0.086906 0.012646
|
||||
45 0.577438 0.366531 0.020875 0.018854
|
||||
60 0.689609 0.972083 0.214281 0.031167
|
Before Width: | Height: | Size: 63 KiB |
@ -1,4 +0,0 @@
|
||||
27 0.321953 0.526194 0.141688 0.405187
|
||||
0 0.687836 0.600877 0.598703 0.798246
|
||||
0 0.286062 0.515728 0.553312 0.941567
|
||||
76 0.341414 0.502248 0.467797 0.533787
|
Before Width: | Height: | Size: 61 KiB |
@ -1,5 +0,0 @@
|
||||
0 0.648875 0.757302 0.205625 0.458437
|
||||
0 0.744398 0.713219 0.122516 0.516729
|
||||
0 0.029992 0.785385 0.057078 0.428146
|
||||
0 0.505914 0.619375 0.173984 0.491
|
||||
34 0.04875 0.891417 0.05625 0.193708
|
Before Width: | Height: | Size: 51 KiB |
@ -1,2 +0,0 @@
|
||||
43 0.868227 0.932448 0.158453 0.135104
|
||||
53 0.500844 0.535958 0.998312 0.901125
|
Before Width: | Height: | Size: 68 KiB |
@ -1,42 +0,0 @@
|
||||
44 0.554898 0.468469 0.329391 0.101354
|
||||
51 0.718219 0.802031 0.035906 0.088563
|
||||
51 0.630547 0.836625 0.038469 0.112125
|
||||
51 0.696375 0.809823 0.010656 0.054229
|
||||
51 0.688344 0.874729 0.087469 0.064042
|
||||
44 0.891422 0.648594 0.115187 0.254896
|
||||
44 0.885594 0.490448 0.153031 0.089771
|
||||
44 0.416 0.134375 0.111625 0.0905
|
||||
44 0.909359 0.608073 0.112 0.167937
|
||||
44 0.820719 0.90601 0.189906 0.183646
|
||||
45 0.531563 0.186646 0.200906 0.13075
|
||||
45 0.775672 0.610417 0.226375 0.236917
|
||||
45 0.901391 0.805719 0.197219 0.297354
|
||||
45 0.499047 0.502073 0.264688 0.179646
|
||||
45 0.693187 0.847594 0.251938 0.289937
|
||||
45 0.62275 0.399625 0.207313 0.143833
|
||||
45 0.652055 0.308385 0.236328 0.134521
|
||||
45 0.365664 0.186219 0.138109 0.068896
|
||||
45 0.637227 0.16401 0.145297 0.130979
|
||||
50 0.325914 0.562802 0.028516 0.065812
|
||||
50 0.467734 0.85 0.058875 0.060208
|
||||
50 0.283016 0.592469 0.033656 0.060604
|
||||
51 0.743414 0.869427 0.041203 0.066021
|
||||
51 0.659156 0.903385 0.021313 0.066146
|
||||
60 0.5 0.543688 1 0.912625
|
||||
42 0.395453 0.918188 0.132469 0.137667
|
||||
44 0.749438 0.282969 0.068875 0.060438
|
||||
45 0.255195 0.225646 0.150203 0.081958
|
||||
45 0.144422 0.291271 0.183094 0.125417
|
||||
45 0.055742 0.380312 0.111484 0.153167
|
||||
50 0.211406 0.736573 0.0625 0.053021
|
||||
51 0.621133 0.892375 0.056922 0.0625
|
||||
51 0.911609 0.801094 0.019031 0.031313
|
||||
51 0.607164 0.838719 0.049016 0.056771
|
||||
51 0.296297 0.792573 0.06525 0.087021
|
||||
51 0.675023 0.80176 0.034984 0.046646
|
||||
51 0.694406 0.941417 0.03225 0.022083
|
||||
44 0.838328 0.280281 0.030687 0.019354
|
||||
50 0.410172 0.699927 0.038156 0.042771
|
||||
50 0.465234 0.639437 0.027375 0.069375
|
||||
50 0.248742 0.561771 0.025672 0.029
|
||||
45 0.134875 0.489365 0.26975 0.191688
|
Before Width: | Height: | Size: 51 KiB |
@ -1,8 +0,0 @@
|
||||
31 0.642445 0.497757 0.241953 0.847196
|
||||
31 0.558789 0.463306 0.228891 0.845631
|
||||
31 0.490047 0.457991 0.148594 0.687944
|
||||
31 0.446477 0.466554 0.134797 0.684556
|
||||
31 0.39518 0.444825 0.129297 0.670257
|
||||
0 0.971078 0.47597 0.0195 0.038715
|
||||
0 0.924641 0.475257 0.018344 0.041869
|
||||
31 0.493016 0.492839 0.147281 0.689743
|
Before Width: | Height: | Size: 41 KiB |
@ -1,4 +0,0 @@
|
||||
71 0.500844 0.60899 0.998312 0.764062
|
||||
71 0.23793 0.427583 0.475859 0.228667
|
||||
79 0.396391 0.447198 0.299625 0.185188
|
||||
79 0.213313 0.34026 0.247406 0.171438
|
Before Width: | Height: | Size: 47 KiB |
@ -1,14 +0,0 @@
|
||||
39 0.106344 0.932656 0.062271 0.134688
|
||||
57 0.825125 0.623328 0.348333 0.462531
|
||||
57 0.149771 0.638133 0.298167 0.406922
|
||||
0 0.48524 0.499461 0.417563 0.978391
|
||||
0 0.217229 0.683711 0.428458 0.543828
|
||||
0 0.727677 0.61193 0.223229 0.401797
|
||||
41 0.268917 0.96507 0.105667 0.069859
|
||||
41 0.045312 0.966008 0.090292 0.067984
|
||||
65 0.289917 0.519969 0.091917 0.034625
|
||||
26 0.784573 0.791211 0.136063 0.114797
|
||||
0 0.047031 0.741297 0.094062 0.317781
|
||||
0 0.91199 0.707867 0.176021 0.359547
|
||||
58 0.303687 0.268297 0.228833 0.314375
|
||||
58 0.331958 0.603742 0.103708 0.112922
|
Before Width: | Height: | Size: 47 KiB |
@ -1,8 +0,0 @@
|
||||
2 0.153867 0.480637 0.133922 0.083868
|
||||
2 0.830969 0.44546 0.054688 0.042948
|
||||
2 0.771828 0.441403 0.048313 0.053561
|
||||
4 0.502234 0.494375 0.995531 0.986486
|
||||
2 0.856453 0.413667 0.012687 0.014552
|
||||
2 0.839664 0.412288 0.011641 0.015566
|
||||
4 0.828281 0.267818 0.343438 0.132288
|
||||
2 0.799281 0.409741 0.024344 0.01816
|
Before Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 59 KiB |
@ -1,33 +0,0 @@
|
||||
9 0.157914 0.445062 0.036766 0.068292
|
||||
9 0.098148 0.439604 0.039203 0.0495
|
||||
24 0.314625 0.812406 0.07875 0.115604
|
||||
7 0.549438 0.707177 0.320219 0.256188
|
||||
7 0.896609 0.700875 0.204312 0.133083
|
||||
0 0.273953 0.859979 0.11175 0.280042
|
||||
0 0.392078 0.763167 0.044344 0.166083
|
||||
0 0.348062 0.755698 0.034813 0.126021
|
||||
0 0.42543 0.764771 0.025578 0.151833
|
||||
0 0.475633 0.782583 0.051797 0.160417
|
||||
0 0.90368 0.726896 0.023047 0.088
|
||||
0 0.203523 0.716594 0.015828 0.077146
|
||||
0 0.510633 0.774021 0.031516 0.155833
|
||||
0 0.137188 0.730198 0.031719 0.100354
|
||||
0 0.227945 0.718365 0.024297 0.080104
|
||||
0 0.363711 0.754375 0.023766 0.144875
|
||||
9 0.364094 0.629573 0.017656 0.023729
|
||||
9 0.047539 0.638865 0.008891 0.014813
|
||||
9 0.04975 0.5885 0.009094 0.0245
|
||||
24 0.334562 0.730542 0.017656 0.040792
|
||||
26 0.489055 0.764677 0.019547 0.028687
|
||||
0 0.314289 0.730177 0.032234 0.082854
|
||||
7 0.906219 0.837302 0.187563 0.325396
|
||||
7 0.196648 0.689646 0.220672 0.124667
|
||||
7 0.759375 0.682094 0.038719 0.029062
|
||||
9 0.152258 0.386031 0.023484 0.030521
|
||||
26 0.150109 0.730167 0.009187 0.026
|
||||
0 0.850312 0.726604 0.022 0.082958
|
||||
9 0.477383 0.558146 0.011078 0.029542
|
||||
9 0.466867 0.557292 0.009984 0.025417
|
||||
9 0.090375 0.62775 0.007625 0.008958
|
||||
26 0.33518 0.741677 0.017516 0.060521
|
||||
26 0.743234 0.714958 0.009594 0.009583
|
Before Width: | Height: | Size: 26 KiB |
@ -1,7 +0,0 @@
|
||||
5 0.07066 0.518619 0.13228 0.474054
|
||||
0 0.57375 0.674565 0.1035 0.509009
|
||||
0 0.05825 0.468724 0.04734 0.083634
|
||||
2 0.51001 0.549895 0.0663 0.047237
|
||||
28 0.70801 0.78985 0.0869 0.185345
|
||||
28 0.77623 0.774324 0.0567 0.209369
|
||||
28 0.73022 0.677327 0.12156 0.12
|