update
This commit is contained in:
parent
48911cceae
commit
a2883e2bb7
52
README.md
52
README.md
@ -1,12 +1,11 @@
|
||||
!!!!因为ncnn onnx2ncnn的bug导致crop算子计算有问题,故模型的指标需重新测试:https://github.com/Tencent/ncnn/pull/3999
|
||||
!!!!因为ncnn onnx2ncnn的bug导致crop算子计算有问题,修复后模型的指标作了调整修正:https://github.com/Tencent/ncnn/pull/3999
|
||||
|
||||
!!!!Because the bug of ncnn onnx2ncnn causes problems in the calculation of the crop operator, the indicators of the model need to be retested :https://github.com/Tencent/ncnn/pull/3999
|
||||
# :zap:FastestDet:zap:[](https://zenodo.org/badge/latestdoi/508635170)
|
||||

|
||||
* ***Faster! Stronger! Simpler!***
|
||||
* ***It has better single core reasoning performance and simpler feature map post-processing than Yolo-fastest***
|
||||
* ***In the ARM CPU of RK3568, the single core reasoning performance is 50% higher than Yolo-fastest***
|
||||
* ***The coco evaluation index increased by 3.8% compared with the map0.5 of Yolo-fastest***
|
||||
* ***It has better performance and simpler feature map post-processing than Yolo-fastest***
|
||||
* ***The performance is 10% higher than Yolo-fastest***
|
||||
* ***The coco evaluation index increased by 0.9% compared with the map0.5 of Yolo-fastestv2***
|
||||
* ***算法介绍:https://zhuanlan.zhihu.com/p/536500269 交流qq群:1062122604***
|
||||
# Evaluating indicator/Benchmark
|
||||
Network|mAPval 0.5|mAPval 0.5:0.95|Resolution|Run Time(4xCore)|Run Time(1xCore)|Params(M)
|
||||
@ -17,7 +16,7 @@ Network|mAPval 0.5|mAPval 0.5:0.95|Resolution|Run Time(4xCore)|Run Time(1xCore)|
|
||||
[nanodet_m](https://github.com/RangiLyu/nanodet)|-|20.6%|320X320|49.24ms|160.35ms|0.95M
|
||||
[yolo-fastestv1.1](https://github.com/dog-qiuqiu/Yolo-Fastest/tree/master/ModelZoo/yolo-fastest-1.1_coco)|24.40%|-|320X320|26.60ms|75.74ms|0.35M
|
||||
[yolo-fastestv2](https://github.com/dog-qiuqiu/Yolo-FastestV2/tree/main/modelzoo)|24.10%|-|352X352|23.8ms|68.9ms|0.25M
|
||||
FastestDet|27.8%|14.0%|512X512|21.51ms|34.62ms|0.25M
|
||||
FastestDet|25.0%|12.3%|352X352|23.51ms|70.62ms|0.24M
|
||||
* ***Test platform Radxa Rock3A RK3568 ARM Cortex-A55 CPU,Based on [NCNN](https://github.com/Tencent/ncnn)***
|
||||
* ***CPU lock frequency 2.0GHz***
|
||||
# Improvement
|
||||
@ -28,10 +27,9 @@ FastestDet|27.8%|14.0%|512X512|21.51ms|34.62ms|0.25M
|
||||
# Multi-platform benchmark
|
||||
Equipment|Computing backend|System|Framework|Run time(Single core)|Run time(Multi core)
|
||||
:---:|:---:|:---:|:---:|:---:|:---:
|
||||
Radxa rock3a|RK3568(arm-cpu)|Linux(aarch64)|ncnn|34.62ms|21.51ms
|
||||
Qualcomm|Snapdragon 835(arm-cpu)|Android(aarch64)|ncnn|28.34ms|16.24ms
|
||||
AMD|R5-5600(X86-cpu)|Linux(amd64)|ncnn|2.16ms|1.73ms
|
||||
Intel|i7-8700(X86-cpu)|Linux(amd64)|ncnn|5.21ms|4.73ms
|
||||
Radxa rock3a|RK3568(arm-cpu)|Linux(aarch64)|ncnn|70.62ms|23.51ms
|
||||
Qualcomm|Snapdragon 835(arm-cpu)|Android(aarch64)|ncnn|32.34ms|16.24ms
|
||||
Intel|i7-8700(X86-cpu)|Linux(amd64)|ncnn|4.51ms|4.33ms
|
||||
# How to use
|
||||
## Dependent installation
|
||||
* PiP(Note pytorch CUDA version selection)
|
||||
@ -41,7 +39,7 @@ Intel|i7-8700(X86-cpu)|Linux(amd64)|ncnn|5.21ms|4.73ms
|
||||
## Test
|
||||
* Picture test
|
||||
```
|
||||
python3 test.py --yaml configs/coco.yaml --weight weights/weight_AP05\:0.278_280-epoch.pth --img data/3.jpg
|
||||
python3 test.py --yaml configs/coco.yaml --weight weights/coco_ap05_0.250_280epoch.pth --img data/3.jpg
|
||||
```
|
||||
<div align=center>
|
||||
<img src="https://github.com/dog-qiuqiu/FastestDet/blob/main/result.png"> />
|
||||
@ -128,8 +126,8 @@ DATASET:
|
||||
NAMES: "dataset/coco128/coco.names" # .names category label file
|
||||
MODEL:
|
||||
NC: 80 # Number of detection categories
|
||||
INPUT_WIDTH: 512 # The width of the model input image
|
||||
INPUT_HEIGHT: 512 # The height of the model input image
|
||||