init customize base on streamlit

This commit is contained in:
LittleBoy 2023-12-14 16:19:54 +08:00
commit 35f30a4513
6 changed files with 214 additions and 0 deletions

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
# Default ignored files
venv
.idea

0
customize.css Normal file
View File

16
main.py Normal file
View File

@ -0,0 +1,16 @@
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print_hi('PyCharm')
# See PyCharm help at https://www.jetbrains.com/help/pycharm/

89
origin.py Normal file
View File

@ -0,0 +1,89 @@
import os
import streamlit as st
import torch
from transformers import AutoModel, AutoTokenizer
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# 设置页面标题、图标和布局
st.set_page_config(
page_title="ChatGLM3-6B 演示",
page_icon=":robot:",
layout="wide"
)
@st.cache_resource
def get_model():
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
if 'cuda' in DEVICE: # AMD, NVIDIA GPU can use Half Precision
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).to(DEVICE).eval()
else: # CPU, Intel GPU and other GPU can use Float16 Precision Only
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).float().to(DEVICE).eval()
# 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量
# from utils import load_model_on_gpus
# model = load_model_on_gpus("THUDM/chatglm3-6b", num_gpus=2)
return tokenizer, model
# 加载Chatglm3的model和tokenizer
tokenizer, model = get_model()
# 初始化历史记录和past key values
if "history" not in st.session_state:
st.session_state.history = []
if "past_key_values" not in st.session_state:
st.session_state.past_key_values = None
# 设置max_length、top_p和temperature
max_length = st.sidebar.slider("max_length", 0, 32768, 8192, step=1)
top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
temperature = st.sidebar.slider("temperature", 0.0, 1.0, 0.6, step=0.01)
# 清理会话历史
buttonClean = st.sidebar.button("清理会话历史", key="clean")
if buttonClean:
st.session_state.history = []
st.session_state.past_key_values = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
st.rerun()
# 渲染聊天历史记录
for i, message in enumerate(st.session_state.history):
if message["role"] == "user":
with st.chat_message(name="user", avatar="user"):
st.markdown(message["content"])
else:
with st.chat_message(name="assistant", avatar="assistant"):
st.markdown(message["content"])
# 输入框和输出框
with st.chat_message(name="user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message(name="assistant", avatar="assistant"):
message_placeholder = st.empty()
# 获取用户输入
prompt_text = st.chat_input("请输入您的问题")
# 如果用户输入了内容,则生成回复
if prompt_text:
input_placeholder.markdown(prompt_text)
history = st.session_state.history
past_key_values = st.session_state.past_key_values
for response, history, past_key_values in model.stream_chat(
tokenizer,
prompt_text,
history,
past_key_values=past_key_values,
max_length=max_length,
top_p=top_p,
temperature=temperature,
return_past_key_values=True,
):
message_placeholder.markdown(response)
# 更新历史记录和past key values
st.session_state.history = history
st.session_state.past_key_values = past_key_values

1
run.bat Normal file
View File

@ -0,0 +1 @@
streamlit run web_demo.py

105
web_demo.py Normal file
View File

@ -0,0 +1,105 @@
import streamlit as st
st.set_page_config(
page_title="web-demo",
page_icon=":web-demo:",
layout="wide",
)
st.markdown(""" <link rel="stylesheet" type="text/css" href="http://localhost:4173/customize.css"> """,
unsafe_allow_html=True)
# 初始化历史记录和past key values
if "history" not in st.session_state:
st.session_state.history = []
if "past_key_values" not in st.session_state:
st.session_state.past_key_values = None
# 设置max_length、top_p和temperature
# max_length = st.sidebar.slider("max_length", 0, 32768, 8192, step=1)
# top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
# temperature = st.sidebar.slider("temperature", 0.0, 1.0, 0.6, step=0.01)
# 清理会话历史
# buttonClean = st.sidebar.button("清理会话历史", key="clean")
# if buttonClean:
# st.session_state.history = []
# st.session_state.past_key_values = None
# st.rerun()
mainContainer = st.container()
if len(st.session_state.history) == 0:
emptyContent = st.markdown("""<div class="example">
<div class="chat-demo">
<div><img class="logo" src="https://chat.topaiart.cn/assets/logo-3-d4405d8e.png"/></div>
<div class="case-list">
<div class="case-col">
<div class="case-title">例子</div>
<div class="case-item">用简单的术语解释质量守恒定律</div>
<div class="case-item"> 10 岁生日有什么创意吗</div>
<div class="case-item">
如何在 Javascript 中发出 HTTP 请求request in Javascript?
</div>
</div>
<div class="case-col">
<div class="case-title">能力</div>
<div class="case-item">能记住用户早些时候的对话</div>
<div class="case-item">允许用户提供后续更正</div>
<div class="case-item">会拒绝不当的请求</div>
</div>
<div class="case-col">
<div class="case-title">提醒</div>
<div class="case-item">少数可能会产生错误信息</div>
<div class="case-item">可能会产生不当的指令或有偏见的内容</div>
<div class="case-item"> 2021 年后的世界和事件的了解有限</div>
</div>
</div>
</div>
</div>""", unsafe_allow_html=True)
else:
# 渲染聊天历史记录
for i, message in enumerate(st.session_state.history):
if message["role"] == "user":
with mainContainer.chat_message(name="user", avatar="user"):
st.markdown(message["content"])
else:
with mainContainer.chat_message(name="assistant", avatar="assistant"):
st.markdown(message["content"])
# 输入框和输出框
with mainContainer.chat_message(name="user", avatar="user"):
input_placeholder = st.empty()
with mainContainer.chat_message(name="assistant", avatar="assistant"):
message_placeholder = st.empty()
# 获取用户输入
prompt_text = st.chat_input("请输入您的问题")
# 如果用户输入了内容,则生成回复
if prompt_text:
# 处理历史为空的情况
if len(st.session_state.history) == 0:
emptyContent.empty()
# 输入框和输出框
with mainContainer.chat_message(name="user", avatar="user"):
input_placeholder = st.empty()
with mainContainer.chat_message(name="assistant", avatar="assistant"):
message_placeholder = st.empty()
history = st.session_state.history
past_key_values = st.session_state.past_key_values
history.append({
'content': prompt_text, "role": 'user'
})
response = "您的问题:”" + prompt_text + "“,我暂时无法处理!请重新问一个问题吧!"
history.append({
'content': response, "role": 'system'
})
input_placeholder.markdown(prompt_text)
message_placeholder.markdown(response)
# 更新历史记录和past key values
st.session_state.history = history
st.session_state.past_key_values = past_key_values
# st.markdown("""
# <footer>
# <div>您的反馈将帮助我们改进<br/>我们的目标是让您和AI更自然、更安全地进行互动</div>
# </footer>
# """, unsafe_allow_html=True)